ALDC-TR-88-206
Final Techrical Report
Cetober 88

A a(NOW .EDGE DICTIONARY SYSTEM
FOR SCHEDULSNG SUPPORT

Lingu .iic Rese: irch Institute, Inc.

ﬁ‘ater 5. Osscerio & d Lowell S. Schnelcar

-

APPROVE) FOR PUBLIC RELEASE; DISTRIBUTION UNLIMI_TED. o

ROME # ‘R PEVELOPMENY CENTER
Alr Frrce Systems Command
riffiss A« Force Base, NY 13441-5700

R o g
ey A e 2 S ' P 3 “4¥
(YT h G RN ¥
pai SR 5 G s ST it

L LA L . EEI S T S
Yo, Lo oo B 34 o

by the RADRC Public Affairs Dividic:. AN

Techoival Inlormation Service (NTIS). At
several p

ubal inciuding foreign nations.

wad, for publication.

i

ADUAOVED : % A /{ / Oy

WALTE™ J. S ENUS
Techr lcal Director
Directorate of Intelligenc: & Reconnaissance

//
o/
e //
4 FOR" THE CDMMANDERSii;f' ;
tah ,: - / 0
JAMES W. HYDE III
Directorate of Plans ! Progrems

i

. ,‘\- !: ;

A

gty
.s ‘

B R Y

#
foouv addees s changed or if you wish to be removed from the R DG B
mai inp list, 't the ‘addressee is no longer employed by ycur eorg-onizati |

ple se notify © 0C (IRL.) Griffiss »FB NY 13441-5700., ‘This will

asist u
in waintaining a currem mailing list.

Lo Lot retuarn coties of this

Teport uniaess coniractual obligations o«
s specific dovoment roguire that {1t be returnad.

~

notices

|

i .v.- _\.u?&.; ﬁ
S B
s B r‘ \,f

- CTE

| UNCLASSIFIED 06 MAR 1999
LASSIF] Hi Al - S
Fi A ed
REPORT DOCUMENTATION PAGE A OMB No. 0704.0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A
28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

N/A

7b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release;

distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR-88-206
6a. NAME OF PERFORMING QRGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Linguistic Researc (If applicabie)
Institute, Inc. Rome Air Development Center (IRDW)
- ———————r Sy —
6¢. ADDRESS (Crty, State, and 2iP Code) 7b. ADDRESS (City, State, and ZIP Code)
5600 Arapahoe Ave, Suite 206) -5700
Boulder CO 80303 Griffiss AFB NY 13441-570
8a. NAME OF FUNDING / SPONSORING 8D. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
Rome Air Development Center IRDW F30602-87-C-0067
T ————— N ——
8¢ ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK_UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO. {NO. NO ACCESSION NO.
65502F 3005 RA 80

11. TITLE (Include Security Classification)
A KNOWLEDGE DICTIONARY SYSTEM FOR SCHEDULING SUPPORT

12. PERSONAL AUTHOR(S)
Peter G. Ossorio and Lowell S. Schneider

13a. TYPE OF REPORT 13b. TIME COVERED 4. DATE OF REPORT (Year, Month, Day)]15. PAGE COUNT

Final frRom Jun 87 yo Feb 88 October 1988 290

16. SUPPLEMENTARY NOTATION

N/A

7. COSATI COBES —— J18. SUBJECT TERMS (Continue on reverse if necessary snd id-ff&fiy Biock number)
FIELD GROUP SUB-GROUP pert Systems, Artificial Intelligence, AY, Database
12 04 Scheduling, Project Management, Knowledge Base
15 0l

19. ABSTRACT (Continue on reverse if necessary and :dermfy by block number)
P All social systems must deal with the problem of integrating what's actually happening with

what they believe should be hiappening. A standard system "for expressing general common-
sense knowledge for inclusion in a gemeral database... [McCarthy]" is needed for the effec-
tive application of expert systems to this task. This project investigated whether a
"Knowledge Dictionary System" (KDS) based om State of Affairs (SA) [Ossorio] can achieve this
result. The investigation was performed with respect to the reference problem of managing
the knowledge necessary to perform and analyze complex scheduling. The conclusion reached
was that a KDS knowledge base could be implemented as a set of database relations that cap-
ture the part-whole characteristics of schedules; and that a small set of second order
relational operators, principally closure, could be combined to achieve a complete part-whole
inference logic for supporting fragmentary scheduling at any level and complex dependencies
within and across levels including "what if" analyses. K. ,.,, (2%

20. OISTRIBUTION / AVAILABILITY OF ABSTRACT 2 T RITY CLASSIFICATION
UNCLASSIFIEO/UNLIMITED (] SAME AS RPT. [J DTIC USERS tnf AT EY
22a. NAME OF RESPONSIBLE INDIVIDUAL 22? TEL§PHONE (Include Area Code) | 22¢c. OFFICE svmech
PATRICIA M. LANGENDORF 330-3126 RADC (IRDW
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

PROJECT SUMMARY

All social systems, from the Govermment to small business
enterprises must deal with the problem of integrating what'’s
actually happening with what they believe should be happen-
ing. A standard system "for expressing general commonsense know-
ledge fFor inclusion in a general database...[McCarthyl” is needed
for the effective application of expert systems to this task.
A Phase 1 SBIR indicates that a “Knowledge Dictionary System”
(KDS) based on State of Affairs (SA) [Ossoriol can achieve this
result. The objective of Phase Il is a fully functional prototype
KDS applied to the problem of managing the knowledge necessary
to perform and analyze complex scheduling. The KOS consists of
SA descriptions expressed as a relational database schema and
operators expressed as extensions of relatiomnal algebra. The
schema is @a collection of Basic Process Units (BPU) and Basic
Achievement Units (BAU) which capture the part-whole character-
istics of schedules. The operators achieve a complete part-whole
inference logic. The KOS will support (a) fragmentary scheduling
at various levels simultaneously but within a single conceptual
framework of contingencies; (b)) representing these contingencies
within, between and across levels; and <(c) propagating the
effects of favorable and unfavorable dsviations throughout the
schedule, including hypothetical “what if” deviations. A KDS for
farmulating, analyzing, monitoring and revising schedules is
immediately applicable to Govermnmenc and commercial organizations
that engage in Govermnment contracting where complex part-whole

relationships and cross-project dependencies ars involved.

e

TABLE OF CONTENTS

1. Executive Summary, e e & e e e e a
2 Definitions. e & & @« = & & o +» & =
. Introduction. . . « + +« &« .« . « . .

4. kDS for Scheduling Support.
4.1. Concepts and Facilities. . . .
4.1.1. Enowledge Structure.

4.1.2. Fart—-Whole Inference

4.1.2.1.

Master Plan Level.

4,1.2.2, Reporting Level. .

4.1.2.3. Logistical Level. .

4.2.2. "Inference" Engine.

(3]

Engine.

4,2. Design Requirements.

4.2.1.1. Fart—-Whole Felation.

4.2.1.5. Assignment Relation.

4.2.1. knowl edge Base Development.

4.2.1.6. Connectivity Relation.

4,2.1,73. Co-occurrence Relation.

4.2.1.2. Element~Individual Relation.

4.2.1.4. Temporal Constraint Relation.

4,2.1.7. Summary of the Normalizestion.

~1

11

-
A an

40

41

42

o

4.2.2.1, Basic Fart-Whole Inference.
4.2.2.2. Resource Competition. . .
4,2.2.7, Temporal Conflicts. . .
4.2.2.4, Choice Principles. . e e .
4.2.2.5. Fropagation of Reports. . .

4,Z%Z. Prototype System Overview.
P

Scheduling Knowledge BRase v e e e e e e e e s
Z.1. O0S/LAN Technical Issues. . . . « - « . .

2.2. 0S/LAN Compatibility Matrix.,
. Structured Social Fractice Description . .

2.4. Scheduling Scenario Description

Future FResearch and Develaopment. e e x e .

6.1. Froblem Domain Extensibility. e e e e e

6.1.1, Decision Aid Framework. v e e e
6.1.2. Situation Dependencies. .
6.1.%, Chpoice Frinciples.

6.2, Froduct Engineering. .« « « + « « « 2 =« o

.21, Saoftware Engineering. e e s e .
6.2.1.1. Support.
6.2.1.2. Integration. . . ., ., . ,

6.2.1.3. Literacy.

. b.nowl edge Engineering.

&Q

el

78

79

79

~

6.2.2.1. Paradigm Formulation.

6.2.2.2. Paradigm Description.

Fotential Applications.
7.1. Commercial Fost Applications. .
7.1.1. Immediate Fotential. .
7.1.2. Future Fotential. . .

7.2. Government Applications.

References . « « « « « o s s « s =

Appendices

Appendi s

I

Appendix B . « o o« 0 4 s e 4 4 = s

Appendix C 0 . o o ¢ o 4 e 4 e« s e

Appendix D o 4 4 @ 4 4 v e s

Appendix E e 4 e s 0 e e e .

. 81

. 82

m
o

o
n

m
o

Y
o~

I8

148

L Rl
aan et

262

278

—T

LIST OF EXHIBITS

TABLE 1 - THE BASIC FPROCESS UMNIT . . . « .+ «+ <« .
TABLE 2 - THE BASIC ACHIEVEMENT UNIT

TABLE T —~ SCHEDULE FARADIGM (EFU) .

1. Executive Summary.

During a rhase One Small Business Innovaticon (SBIR) Research
Contract we i1nvestigated the teasibility of developing a
Fnowledge Dictionary System based on State of Affairs
technology. We initially chose the general problem of
developing and monitoring the schedule of a large project to
facilitaté the investigation. We then added technical

detail regarding a specific schedule, the problem of
interfacing computer operating svstems (05) with local area

networks (LAN).

The investigation establicshed that State of Affairs tech-
nology is a feasible foundation for a Knowledge Dictionary
Svstem capable of managing knowledge and the relationships
among knowledge of different types and at different levels
of detail. The knowledge repository is a conventional
relational database mamagement system. The knowledge
Dictionary System is able to interact with the data diction-—
ary ot the database to make conventional data available to
knowledge-based inference. The goal of the SEIR, to
demonstrate the feasibility of straightforward interaction

between expert system and database was achieved.

A Fhase II effort to build a kKnowledge Dictionary System

fully capable cf managing complex scheduling 15 feasible.

This Fhase II effort can rea~onably be =xpected to lead to
a successful commercial product, and be readily extensible
to other situations where interencing 1s to b2 per+formed

using data in conventional relational databases.

The scheduling problem undertaken is best exemplified by a
Government proiect in which: (1) some of the requirements
ére met by Government actionss (Z2) other requirements are
met by contracts; (3) some requirements are met partially by
Government actions and partially by two or more contracts
with different contractors; and (4) requirements themselves
change during the project. Moreover, internal to contracts
and Government actions, there are options which sometimes
have impact on other options and sometimes impact externally
on other contracts or contract options. The Knowledge
Dictionary System will provide a standard and comprehensible

means to represent and track these complex relationships.

The scheduling problems that will be facilitated by a°
Fnowledge Dictionary System include: (1) building an
integrated and detailed overall proiect schedule from
initial statements of contract relationships, Government
provided capabilities and individual contract schedules:
(2) identifying real or potential conflicts and flagging
them for attention; (Z) tracking requirements across

contracts and identifying what must change when requirements

change: (4) determining the impact of schedule charmges 1n
one contract on other contracts and Governmsnt =actions; %)
dynamically assesszing the difference between the currant
schedule and what is actually happening: (=) finding ana
evaluating options when the difference between schedule and
actuality becomes unacceptable; and (7)) rebuilding the
overall proiject schedule whern options are implemented and

programs are modified.

In order to effectively solve these problems, it was
concluded that a kKnowledge Dictionary System applied

to the problem of managing the knowledge necessary to
perform and analyze complex scheduling must represent the
part-whole characteristics of schedules and provide support
for a richer set of inferences that encompass these char-
acteristics. It must allow fragmentary scheduling at
various levels simultaneously within a zingle conceptual
frameworl:, It must allow the representation of and support
inferencing upon contingencies between and across levels as
well as within a single level. It must accept reports of
activities and accomplishments at any level and propogate
the effects of both favorable and unfavorable deviations
throughout the overall schedule. And 1t must automatically

provide the capability to do "what-if" analysis.

Consequently, the scheduling problem has the complexity
necessary to serve as an appropriate demonstration problem
for Fnowledge Dictionary System dével@pment. At the same
time, the soluticn to the scheduling problem will provide

the Air Force with significant and needed capability in its

own right.

10

2. Definitions.

This report makes use of terminology which nas unusual or
more specific meaning in the context of State of Affairs
descriptions in general, and those of scheduling 1in partic-

ular. This section provides definitions for these termes.

2.1. Social Practice. A social practice is a pattern of
behaviors engaged in by persons to cooperatively achieve a
desirgable state of affairs or to prevent a state of affairs
from deteriorating to one of a less desireable sort.
Furthermore, the social practice does not succeed by luck or
accident, but is taught, learmned, and done by persons; and
is done successfully by persons routinely enocugh to warrant
a description. The descripton does not specify which actual
behaviors to engage in on any given occasion, but codifies
what must be accomplished at each stage of the practice, the
set of optional behaviors that can lead to that accomplish-
ment, and the rules for determining who is elibigle to
engage in the various rolee of each optional behavior if it

chosen.

2.2. Scenario. When a social practice actually does
occur, a description of its occurence (or possible occur-
rence) is called a scenario. A scenario description differs

from a social practice description in that. instead of

11

‘

optional behaviores and eligibility rules, the scenario
description specifies which ot the optional beheviors are
engaged in and Who,>in particular, engaages in them. An
actual {(as opposed to merely possible) scenario description
is generally not available until after the +act and, as
such, the report makes reference to "historical particulars®
as the behaviors and elements of a social practice that

actually occurs.

2.3, Community. A community is & any group of persons
who share a common world (i.e., agree upon a set of constit-
uent obiects, processes, events and states of atfairs such
as the "world of gol+") and engage in, among other things. a
set of fundamental social practices that maintain the
community. These include, at a minimum, the practices of
conveying the status of member (or non—-member) of the
community, negotiating status within the commmunity, and

using the language (iargon) of the community.

2.4. Institution. An institution is an organized set of
social practices that is of sufficient import to the commun-
ity that memebers decide to formally record its description
as a set of rules and eliqibilities and to include the
maintenance of the description as a part of the csocial
practice itsel+; i.e.. it is given a "life" of its own to

insure that it will survive any or all of its members.

~
-—

2.3. Scheduling (1). All use of the term "schesduling”

or "schedule" outside of Sectiomns 4 and S is with the
connotation that obviously comes to mind and nzeds no

further explication for the purpose of this report.

2.6. Scheduling (2). Secondly, "scheduling" i1s used
within Section 4 to denote the entire social practice
of planning some achievement, monitoring the progressz toward
that achievement including the monitoring and revision of
inconsistencies among all elements in the practice, and
actually attaining some achievement and comparing it with
that which was planned. Formally speaking, scheduling used
in this way denotes the entire process of transition from
the social practice description to the scenario descrip-

tion.

2.7. Scheduling (3). Finally, within Section 5, the
formal social practice and scenario descriptions actually
used in the investigation was the institution of scheduling
as it occurs in DoD when large and compleyx systems a. e
developed and includes the formal stages of FDR, CDR. TRFR,
etc., and their attendant reporting reguirements. The
difference between scheduling (2} and scheduling (2) is that
it includes formalities established by the Dol scheduling

community (most importantly, the language of scheduling in

13

that community! whereas the latter focuses on the "essence'
of scheduling that could be institutionalized by a commun-

ity but hasn®t been.

2.8. Needs. In the context of any social practice,
there are basic needs which, if nct met, make that practice
impossible to engage in. In the context of scheduling we
thus define the concept of need as something, which if not
met, will result in a pathalogical case of the schedule.
The following are the minimal nceds for a schedule to be

carried out.

2.8.1. Status. Thiszs referz to the place within a
schedule that a person or thing has and, operationally,
determines what behaviors it is eligible to be a part
of. Without status, nobody or nothing is eligible to be any
element of a schedule and thus the schedule cannot be
carried out in practice. This also implies that the social
practice of making status assignments is integral to the

zacial practice of scheduling.

2.8.2. Distinction. To make a distinction is to
in roduce order and meaning in a schedule by, at least,

classifying things as being of one sort rather than another.
I+ i+t is not possible to distinguish between the achievement

of a given schedule and some other achievement, 1t is

14

impossible to determine i+ the schedule exists let alore to

erngage in 1it.

1]

2.8.3. Adequacy. All stages cf a scheduls

H

must have at least one optional behavior that am eligible
person is competent to perform, and for which all the
elementsz have at least one eligible individual. If there is
no such adequate behavior then the schedule will, at

best, miscarrvy.

2.8.4. Value. There must exist some princi-
ples by which one achievement can be deemed to be more
or less desireable than another. At a minimum, there needs
to be hedonic, prudential and ethical principles and, in
general, there will also be esthetic principles. Without
values, there are no means by which an achievement can
be evaluated and, hence, no motivation for engaging in any

schedule that achieves it.

2.9. Conflict. In this report, conflict denotes any
state of affairs in which one or more needs are naot being
satisfied. When it is said, as it will be throughout this
report, that & schedule is in conflict, it means, first of

all, that one or more of any ot the nzeds iz ~om Ts:i-9 ot

ik
J
[®]
o
rt
1]

vz in this sznss 13 much bhroacsy

H
Al
1

i
3t
ot
=
)

1
I
4
1

¢

Gszge ov ths tsem soeozsoliog, alfhoooh thaDoLE oz oZenuins
giample of conflict as we use the Term. Zgcondl,. 1T mEAnE
bimzat the scheduls 1s in zonfilct in one oS- more or “he ways

in which it could be in conflict according to i1ts descrip-
tion. Its use in this sense is potentially narrower than in
commonplace scheduling in that if a particular way of being
in conflict is not directly or indirectly present in the
description, conflicts of that kind will never arise (e.g..
unless there is an explicit constraint that a person can
only be in one place at a time, a schedule that calls for a
person to be at two different places at the same time will

not be in conflict).

2.10. Knowl edge. In this report, knowledge refers to
that which is necessary to engage in scheduling. More
specifically, in this usage knowledge includes, at a
minimum, for the social practice of scheduling: (a) Want;
i.e., the knowledge of the state of affairs that is desired
as a result of engaging in the schedule; (b) Competence;
i.e., the knowledge of which behaviors are called for by the
schedule and how tao engage in those behaviors; and (c)
Cognition; i.e., the knowledge of the present state of
affairs (including knowledge of limited competence and want)
and what social practices are available to engage in to

alter (maintain) the present state of atfairs.

16

FIII--.---.-.----.----------------—-—-r*

2.11. Knowledge Dictionary. A medium or svstem

within the conte:xt of a given social practice for recording

the competence and cognition knowledge necessarv to engage
in that =zocial practice in such a way that a person that
wants tc engage in that social practice but lacks zome of
the knowledge necessary to do so may use the knowledge
dictionary to supply the knowledge that he lacks. In
addition, a knowledge dictionary mav also include the want
component of the knowledge but that a persons ability to
make use of the want component is severly limited in that i+
he lacks that knowledge, he cannot, in principle, know that

he wants the knowledge in the dictionary in the first place.

2.12. Knowledge Base. As opposed to a knowledge
dictionary which is merely the medium or system for record-
ing knowledge, the knowledge base refers to the knowledge
that is actually recorded in the knowledge dictionary at the
moment; i.e., the range of social practices identified and

the depth to which they are defined.

2.13, FPart-Whole Relation. 3Social oractices in
general, and schedules in particular, are primarily de-
scribed by part-whole and part—-part (see below) relations.
The description of a whole schedule is alwavs an.ellipt1cal
{incomplete) description for which a more detailed descrip-

tion could be provided bv decomposing it inteo sub—-tasks.

17

Conversely., schedules can be combined to yield a more
comprehensive whole schedule. In either casze, the result is
to create a relationship between a part amd the whole of
which it is a part, i.e.., a part-whole relation, for which
both components are necessary to the existence of each as
parts and wholes (they may all exist independently and
usually do). If the whole does not exist., then nothing

is eligible to be a part of it. If any of the parts daes
not exist, it is impossible to construct the whole from its

parts.

2.14, Part-Part Relation. When a part-whole relation
is created, the potential exists to have part-part rela-
tions. A part-part relation is a contingencey statement
that declares which combinations of parts may occur concur-—

rently as parts of a whole.

2.185. Inference. In this report, inference is used
to denote the process by which one or more scenarios can be
formulated from a social practice description. More
specifically, as used in scheduling, inference denctos the
outcome or range of outcomes that can be reasonably inferred
from the schedule given its present state. At the outset,
the schedule 1s merely a social practice that has vet to be
engaged in and thus no possible outcomes euxist. As the

schedule progresses; i.e., as options and eleqgibilities are

18

replaced with historical particulars, the range of poscsible
outcomes 1s constrained. A complete description of the
actual outcome can never inferred until after the +act, but
informative incomplete descriptions can be inferred at anvy

time once the schedule is engaged in.

2.16. Inference Engine. In this report, the infer-
ence engine(s) denote an algorithm and its implementaticon as
a computer program which is capable of inferring particular
aspects of possible outcomes of a social practice, &
schedQIE in particular, given only limited cognitive
knowledge of the present state of affairs. In some cases
the term is used in the sinqular without qualification to
denaote the aggregate inferencing mechanism that infers every
aspect of the possible outcomes, hence the outcome itself.
In other cases, it is used in the qualified plural to denote
the mechanism that infers some aspect of the possible

outcomes based on a particular kind of knowledge.

2.17. Part-Whole Inference. In this report, part-
~whole inference is used to denote the kind of inference
that can be formulated from part-whole and part-part
relations. FPart—Whole inference is fundamentally different
than logical (first-order predicate logic) inference in one
important wav. Logical inference is serial in nature and

always complete. I.e., given

19

Consequent if Antecedent; and ... and antecedanta
the consequent is true only indirectly by virtue of all the
antecedents being true. And i1if any of the antecedents are,
themsel ves, conseguents then it is true omly indirectly by
virtue of its antecedents being true, ad infinitum. It 1s
only where antecedents have no further antecedents, called
ground clauses, that direct assignment of truth values can
be made. By contrast, part-whole inference is parallel in
nature and always incomplete. Truth status can be directly
assigned at any level of the part-whole decomposition; i.e.,
at the level at which it was actually observed, and the
truth status of a whole at any level determines the truth
status of its parts (and their parts, ad infinitum) and is
always maintained as the set of parts whose existence needs

to be confirmed.

2.18. Small Business Innovation Research (SEIR). The
SEIR program exists in all Government agencies to encourage
small businesses that do not have the capital to maintain
their own research and development programs to create
innovative and commercially viable products. Throughout
this report there are reterences to the Fhases (I, I1I, IID)
of an SBRIR contract. Normally, a Fhase I SRIR effort is a
small (6 man—month) contract with the Government to estab-
lish that an innovative concept is sound, feasible, and

commercially viable as the basis tor a product. A Fhase 11

20

SRIR effort is a larger (2 man-vear! contract with the
Government to actually develop a prototype of the product
for hands-on testing and evaluation. @A Fhase [I1I SEIE
2ffort is a full-scale project, funded from brivate sources
attracted by the results of Fhase II, to develop and market

the product in the commercial sector.

3. Introduction.

All social systems, from the Government to corporations

to small business enterprises must deal, on a daily basis,
with the problems of integrating what® s actually happening
with what they believe should be happening. A standard and
comprehensible system "for expressing general commonsense
knowledge for inclusion in a general database...[1]" could,
to a large extent, relieve the present need for training in
a vast number of social practices while concurrently
enhancing the expertise of individuals participating 1n
those practices. During a Fhase I SERIR Contract [2] we
inve .tigated the feasibility of developing a KFnowledge
Diétionary System based on State of Affairs [3] technology
to achieve this result. To facilitate the investiga-

tion, we chose a specific social practice that appears to be
paradigmatic in all enterprises: the practice of developing
and monitoring the schedule of a large proiect. Typically,
such proljects are ccmplex, extend over lengthy periods of
time, involve the meshing of a variety of components and
activities at different levels, and, most importantly, do
not proceed according to plan. It is these characteristics
that make managing the knowledge necessary to perform and
analyze complex scheduling a difficult problem within the

confines of existing technology [4].

A
A

The problem is best exemplified by a Government project in
which: (2) only some of the requirements are mat by
Government actions; (b) other reguirements are met by
contracts; (c)» often, & requirement 1s met partizally by
Government actions and partially by twoc or more contracts
with different contractors; and (d) the requirements
themsel ves change at discrete points of time during the
proiect. Moreover, internal to contracts and Government
actions, there are options which have impact on other
options, and saometimes impact externally on options in other
contracts. The consequence of not having & standard and
comprehensible means to represent these complex relation-
ships presents numerous problems in at least the following

tasks:

(a) receiving initial statements of contract relation-—
ships, government provided capabilities, and indiwvidual
contract schedules and integrating these into an overall

project schedule:

(b) identifying real or potential conflicts and flagging

them for attentions

(c) tracking requirements across contracts and identify-

ing what must change when requirements change:

~T
Pospa

(a) determining the impact of schedule changes in one

contract on other contracts and Government actions:

(e) dynamically assessing the variance between the

current schedule and what is actually happening: and

(f) finding and evaluating options when the variance
becomes unacceptable and rebuilding the overall proiect

schedule when options are implemented.

In summary, managing the knowledge necessary to perform and
analyze the scheduling of large, compleyx proiects is a
signhificant problem throughsut Government and private
enterprise. Yet the tools available to deal with this
problem, no matter how elaborate, remain limited in their
ability by virtue of having the same technological founda-

tion, one that has not changed for many decades.

An effective Knowledge Dictionary System applied to the
problem of managing the knowledge necessary to perform and
analyze complex scheduling must, at the foundation level,
represent the part-whole characteristics of schedules and
provide support for a richer set of inferences that encom-
pass these characteristics. It would allow fragmentary
scheduling at various levels simultanecusly but within a

single conceptual framework of contingencies. It would

24

allow the representation of these contingencies, not only
within a single level, but also between and across levels.
And it would accept reports of activities or accomplishments
at any level and propagate the effects of bath favorable and
unfavorable deviations throughout the owverall schedule,

including hypothetical "what if..." deviations.

The Fhase I investigation revealed that State of Affairs
(SA) is a feasible means to represent the knowledge
necessary to schedule analysis. The essence of this
representation is to view a schedule as the part-whole
decomposition of a process, most of which, at the time of
analysis, has not yet unfolded and is not yet available as
observable information. Specifically, the representation of
a schedule must capture at least the following character-

istics of schedules.

(a) A schedule, being a description of a process,

divides into smaller, related schedules without limit.

(b) An obljective can be achieved by any number

of optional processes, each of which has & schedule.

(c) The options available to achieve an objective
within a schedule are contingent on the options chosen to

achieve other objectives 1in that schedule.

t
&

d> If an option in a schedule requires a resource,

then its viability is contingent on other options in that

zchedule requiring that resource.

(e) I+ an option has temporal interrelation-
ships with other options in & schedule, then its state
(beginning, occurring or ending) is contingent on the state

of those options.

(f) When options in a schedule are in conflict
due to resource requirements or temporal interrelationships,
the process by which the conflict occurred is an (undesir-

able) option at some level of that schedule.

(g) The achievement of an obijective in a schedule
is equivalent to the occurrence of some option for every

process necessary to that achievement.

(h> What may be reported as a process needs to
be re~describable as the achievements resulting from the
options that constitute that process; and what may be
reported as an achievement needs to re-describable as the

options for the processes that lead to that achievement.

The investigation also revealed that the kinds of inference
that can be performed over part-whole repres=ntations of
schedules are considerably richer and more comple:x than
those presently available and that all of these., once the
part-whale representation is in place, are teasible to
implement as computer-based inference algorithms. Specific-—
ally, the inference algorithms applied to part-whole repre-
sentation of schedules must satisty the following obiect-

1ves.

(a) The part—-whole inference process must be
augmented to recognize that some achievements in a schedule
may be safely assumed to exist for long periods of time

while others must monitored at very short intervals. [3]

b)) Frequently, it is the case that one of two
tor more) different achievements in a schedule may have
occurred given the reported information about the progress
toward them, but due to real world rescurce limitations, it
could not be the case that more than one is possible
concurrently {41, When this occurs, the process of part-

~-whole inference must be able to:

(1) recognize that a partial resource conflict

exists and has the potential to create a2 psthological

state of the schedule:;

(22 continue to analvyze oDoth possible states
of the schedule in terms of other part-wheole resource

relationships; and

(3) when a total resource contlict existes,
support the application of choice principl=zs to determine

which state of the schedule is more desireable.

(o It is also frequently the case that only
one of two or more different achievements in a schedule can
occur at a agiven time due to temporal conflicts. [7]
Moreover, these may not be simply seguential relationships
but may alsoc involve complex overlapping temporal rela-
tionshins. In such situations, the process of part-whole
inference must be able to incorporate temporal chains of

reasoning that:
(1) recognize that a partial temporal contlict
exists and has the potential to create a pathological

state of the =schedule;

(2) continue to analvze both possible states

I ThE o scheTolE SagE T LmTior Da ot ToT Tt Tt o
relztiaorships: ang
L AhErm 2 Tt aL TErooral Tonclioe e o=,

cholcs prlinclioiss to determnins

i

]
s
0

-

i’

i
rt

-

%]

3

3

support the

Whloh ztate of the schedule is more desireable.

i

(d? In the case of both rescurce and temporal
conflicts, the support of choice principles must be provided

in at least two ways:

(1) choice principles may be represented
in advance as descriptions of several versions of a
schedule (e.g., aggressive, conservative) in which case
the most desireable version will emerge automatically

fi.e., no conflicts will exist for one of the versions!:

(2) choice principles may be applied ad
hoc in which case the part-whole inference process must
be able to provide notification of where in the schedule

these conflicts exist.

In either case the part-whole inference process must support
removing a version of the schedule and determining the

consequences of eliminating its associated conflicts.

(e) Ferhaps the most critical reguirement 13
that the process o part-whole inference must be able to
draw inferences from an admixture of report types aftecting

different levels in the schedule.

(1) In the +irst case the process must
be able to infer that multiple reports of different types
are, in fact, reports about the same (or part of the
same) progress in the schedule and then use these

equivalences in its chain of reasoning. [8]

() In the second case, it must be necessary
to establish the existence of parts from wholes as
well as conversely. Most familiar is the induction that
if all the prerequisites to an achievement are complete,
then the milestone has been reached. Leszs familiar, and
unique to part-whole inference, is the deduction that the
completion of an achievement implies that every prereg-
uisite is complete (and some of those may be ptrerequisite

to other achievements). [?]

Moreover, allowing heterogeneous reporting ncot only inte-
grates the formal reporting systems already in place,
but also taps less structured sources of information

(meetings, conversations, etc.!) that already exist but are

rarely incorporated into the scheduling process 1n any

formal way.

In summary, the Fhase I investigation revealed that a system
which effectively addresses the problem of managing the
knowl edge necessary to perform and analyze complex schedul-
ing must capture the part—whble characteristics of schedules
and provides support for a much richer set of inferences
that encompass these characteristics. The system has been
shown to be both possible and practical to develop and

would Have enormous potential throughout both Government and

private industry.

4. KDS for Scheduling Support.

This section is divided into three parts. Tre first
presents the concepts and facilities of an innovative
Fnowledge Dictionary System for scheduling support. The
second presents the design requirements that must be
satisfied and and the feasibility of their implementation.
The third provides a functional overview of a pre-prototype
Knowledge Dictionary System baséd on this concept that was
applied to the scheduling problem as an integral part of the
Fhase I investigation. The knowledge base that was actually
developed during the investigation and implemented within

the system is presented in the following section.

4.1, Concepts and Facilities.

A Knowledge Dictionary System is comprised of two princi-
pal components: the knowledge representation structure; and
a part-whole inference engine that operates on this struc-
ture. The knowledge structure is a collection of Bacsic
Schedule Units which encapsulate the descriptions of (a) the
processes and achievements that comprise the schedule, (b)
transformations for redescribing processes as achievements
and conversely; and (c) the part-whole relationzships among
these constituents. The part-whole inference engine

navigates among the schedule units to (a) determine the

T
(S

degree to which higher-level schedule units are complete
based upon the state of their constituernts, (b) propagate
the impact of reports about lower-level schedule urmits to
the higher-level units of which they are a part, (c) detect
actual or potential conflicts due to either resource or

temporal constraints.

4.1.1. Knowl edge Structure. Corresponding to the
basic concepts of scheduling {(process and achievement) 1s a
format for representing concepts of =ach type. These are
the Basic Frocess Unit (BPU) and the BRasic Achievement
Unit (BAU). The reason for different units is that the
first part of each represents the observational aspect of
the concept (the way it was reported: i.e., a process has
stages, an achievement has deliverables, etc.) The second
part of each format has., embedded within it, the elemental
resource aspect of the concept which represents the means of

converting from one to the other.

Within the knowledge Dictionary System the representation
units are be recorded as a set of interrelated tables. The
reasons for this are twofold. First, from experience with
our existing implementation, one wiil not want to deal

with an entire representation unit at once, but ratner will
want to focus on one or two specific aspects of it (2.qg..

the list of options for a given stage of a process) at a

-

time. Secondly, readily available Database Management

Systems handle tables (relations) with great facility and it
is considered to be of great importance that the kEnowledge
Dictionary System be able to make use of these readily
available facilities rather than to depend on its own,
unique way of representing knowledge. [10] For illustrative
purposes the representation units are presented in this

~

section in their expanded hierarchic form in Tables 1 - 2.

In addition, the fact that separate reports can be formulat-
ed as reports of the same (or part of the same) schedule
requires that there be logical relationships among the
different representation units. These are represented
within the kKnowledge Dictionary System as a set of Transi-

tion Rules. These are systematized as follows:

T1) A schedule is a totality of related processes

and/or achievements and/or schedules,

T2) A schedule (or process or achievement) is a

constituent of a s=chedule.

TZ) An achievement is a schedule that has other,

related achievements as immediate constituents.

i
H

T4)

T3)

T6)

T7)

T8)

T9)

T10)

A process is a sequential change from crne

achievement to another.

A process is a schedule having other, related

processes as immediate constituents.

An achievement is a direct change from one

schedule to another.

AN achievement is & schedule having two
schedules as constituents (i.e., "before" and

"after').

A given schedule® s having a given relationship

to a second schedule is a schedule.

That a process begins is an achievement and

that it ends is a different achievement.

That a process occurs (begins and ends) is a
schedule having three schedules as constituents

(i.e., "before,"” "during," and "after").

In addition to these, because of their inherent and neces-

sary recursion, it is also necessary to have limiting cases

that can be invoked to "stub off" the unlimited decomposi-

tion or composition permitted by the rules. These are:

L)

L2)

The schedule which includes all other schedules

{i.e., the master plan).

AN achievement that has no constituents, hence
is an atomic particle (i.e., an indivisible

resource).

A process that has no constituents, hence no
beginning that is distinct from its end (i.e.,

the equivalent of an achievement).

F-NameA:

TABLE 1 - THE BASIC PROCESS UNIT

The process "Name” of process A

F-DescriptionA: The "Description" of A. It specifies:

I.

F-Paradigms: The major varieties of FP-NameA. This is a technical
convenience. Every process has at least one paradigm. But many
processes can occur in ways so different that it is easier provide a
separate description for each rather than to encumber a single descrip-
tion with an unmanageable number of contingencies. For each paradigm,
the following are specified:

(a)

(b)

{c)

(d)

(e)

Stages 1-K: These are "Names" of sequentially distinct progres-
sions within A. They are gystematically specified as F-NameAll,
FP-NameAl2, ... ,FName-A1K for Faradigm I. For each stage are
specified:

(1) Stage-Sets 1-M: These are the "Names" of the subsets of a
stage that bave temporal interrelationships that are not merely
sequential and are distinct in that each element of the set
corresponds to a definable achievement. They are systematically
specified as P-NameAlll, P-NameA112 for stage 1. For each
stage—-set the temporal relationships among the elements are
defined.

(2) Options 1-N: These are the "Names" of various exemplars of
the stage in question, i.e., the various ways in which that the
progression could occur (every stage has at least one option).
Each Option is systematically specified as P-NameAlli, FnameAl1Z,
... sPnameAlIN. For each option is specified a set of processes,
which, if each were completed, would result in an achievement that
would qualify as the progression denoted by the stage. These are
processes in their own right and thus any further specification is
accomplished by another BFU.,

Elements: These are the logical cateqories within the process for
the resources necessary to the occurrence of the process.

Individuals: These are the formal exemplars of Elements that are
actually present or available at the time the process occurs.

Eligibilities: These are the constraints that exemplify which
individuals are capable of being which elements in an occurrence
of the process.

Contingencies: These express co-occurrence constraints among the
stage—set-options of the process (i.e., the options available at
one stage of the process are contingent on which options may

have been selected at another stage - and it is these, when they
become too complex, that motivates the employment of different
paradigms).

37

.

(f) Versions: This is the net eftect of all of the above. It
captures the result that the different versions of the process
P-NameA on different occasions need not resemble one another in
any way other than their being alternative versions of F-Namef.

f—-NameA:

TABLE 2 -~ THE BASIC ACHIEVEMENT UNIT

The achievement “Name" of achievement &

A-DescriptionA: The "Description” of A-NameA. It specifies:

I.

A-Faradigms: The alternative decompositions of A-NameA. This is =
technical option. 1f only one paradigm exists, it will be the same as
A~-NameA. For each paradigm, the following are specified:

(a)

(b)

Constituents: A list of immediate constituents which are system-
atically designated as A-NameAll, A-Namef12, ... ,A-NameRIN for
paradigm 1. Each constituent can now be expanded (decomposed)
using another Basic Achievement Unit,.

Relationships 1, 2, ... ,M: These are given by a list of rela-
tionships in which each item on the list is specified as follows:

(1) Name: An expression which identifies an N-place relation-
ship. N may vary among different relationships in the list.

(2) Elements: A list of N elements, each of which is one of the
members of the N-place relationship.

} Individuals: These are the formal exemplars of Elements that
are actually present or available to participate in the
relationship when it occurs.

(4) Eligibilities: A specification of which individuals may or
must participate as which elements in the relationship by
virtue of their constituency in A-NameAl.

{5) Contingencies: These eupress constraints of two kinds;
attributional constraints on the elements of the relation-
ship, and co-occurrence constraints among the elements of the
relationship.

_

4.1.2. Part-Whole Inference Engine. The know-
ledge Dictionary System, by virtue of its knowledge repre-
sentation structures, is able to continually analyze the
part—-whole character of a schedule, most of which has
not yet occurred or is not yet available as reportable
information. It does this routinely, in much the same way
as a person is subconsciously aware of what he thinks is
going on, and continually re-—-assesses that conclusion in
light of new developments as he becomes aware of them. And
while the system, itself, does not impose any rigid distinc-
tions among the levels of part-whole characterizations (the
system treats this as a continuum), it is helpful to
axplain the behavior of the inference engine by reference to

three levels: (ay the "master plan'" level which represents

an overall pattern of activity directed at the achievement
of the project, most of which has not yet occurred but which
will serve as an explanation for what did occur after the
fact; (b) the reporting level which represents situation-——
dependent facts (empirical identities) as they occur,
without regard for how those facts may or may not fit into a
higher level pattern: and (c) a logistical level in which
facts reported in one context of the schedule can be

redescribed as facts in the another context of the schedule.

4.1.2.1. Master Plan Level. The goal of the

inference engine at the master plan level is to determine

40

that the plan is or is likely to be completed acs des-—
cribed. This is accomplished by a process termed "back-
-chaining" 1in which the inference engine determines which
constituents of the plamn are essential to itse being com-—
pleted. In turn, each of those constituents is similarly
analyzed and so on until the inference ergine can establish
that, in this situation, an empirical individual is avail-
able and eligible to be each element of each constituent.
If it succeeds, it records the results of the analysis and
the time [11]1 at which the conclusion was reached. Each
time it fails, it records the constituent that it failed to
materialize, the time that the failure occurred and the
reason that the failure occuwrred, and proceeds to anocther
constituent for which the entire process is repeated. This
process is continuous and the result is a record of the
chain of reasoning, and the links in that chain where the
reasoning failed, so that the inference engine can repeat-
edly retry to establish each unconfirmed empirical identity
until it successfully works backwards (hence, back-chaining)

to the master plan from which it started.

4.1.2.2. Reporting Level. The goal of the
inference engine at the reporting level is
straight-forwardly that of establishing empirical identities
and it does this via a process termed “forward-chaining'.

When the inference engine encounters the report of a fact

41

that i1s eligible to be an essential element in some lavel

of the schedule (e.g., is an option for a stage of some
process), i1t processes the contingencies that operate as
constraints on its eligibility. This process is also
continuous in the sense that, each time a new report enters
the system, the inference engine checks which options for

an element currently under consideration may have become
eligible by virtue of that fact, and proceeds to work
forward (hence, forward-chaining) in search of new empirical
identities. Whenever an empirical identity is established
(or discounted), the result and the time that the result was

obtained is recorded.

4.1.2.3. Logistical Level. Finxlly, the goal
of the inference at the logistical level is to determine
whethzr empirical identities established in one context of
the schedule can be redescribed as empirical identities in
another context of the schedule. Empirical identities are

cases where one thing is the sar2 thing as another thing,

not as a universal or necessary fact ithe way "a cfsctarmgi=z’
12 always and necessarily the same thing as "z trapezciao
J1tTh might amgles") our onlv as 2 historicsi, =mpilrilcal

+ACTs 1.8., Cases 10 which in this situation what is

described as F i1s the same thing as what is described as O
and R, =tc. The engine doe=sz this by a process termed

"cross-chaining"”. Whenever an empirical identity is

established at the observaticonal level the inference engine
examines all similar constituents, without regard for what
they are constituents of. I.e., 1t cuts across the chain of
inference ‘hence, cross—chaining’) and merely records the
result and the time at which it was obtained. it does
nothing further at this point. However, when the inference
engine is subsequently back-chaining or forward-chaining in
another chain of inference it will encounter and make use of

these results.

4.2. Design Requirements.

The investigation of how successfully the technology
supports scheduling and the practicality of implementing it
within existing software technology proceeded along two
lines in parallel. The first of these was to transform the
knowledge base into a set of database relations and this is
discussed first. The second was to determine the require-
ments for processing the knowledge base in terms of a

generalized set of database operations. This represents the

"inference" engine.

4.2.1. Knowledge Base Development. The develop-—-
ment of the knowledge base is principally the task of
developing a reasonably normalized relational schema of the

infaormation represented in both the Basic Frocess Unit (BFL)

47

and the Basic Achievement Unit (BAU). Due the essential
similarity between the BFU and BAU, it was anticipated that
a single schema will serve both and this, in fact, turned
out to be the case. The principle relations developed
include the Part-Whole relation, the Element-Individual
relation, the Eligibility relation, the Temporal-Constraint
relation, the Assignment relation, and the Connectivity
relation. Furthermore, although the EBFU and BAU provide for
stage—sets and option—-sets, the normative case is that (a) a
stage is singular, and (b) only & single process is neces-
sary to satisfy the occurrence of that stage. The following
discussion assumes this simplification for brevity unless

otherwise noted. The convention of underlining the domains

which comprise the key of the relation is employed.

4.2.1.1. Part-Whole Relation. The notion that
the option of a stage of a paradigm of a process is, itself,
a process is the essential closure property that has to be

captured in the part—whole relation.

(FROCESS~-NAME, PARADIGM-NAME, STAGE-NAME, OFTION-NAME)

Note that an OFTION-NAME will have the same status as a
FROCESS—-NAME which creates the desired closure. If we
decompose this into binary relations as follows, we disclose

the first major naming problem we have to contend with.

44

(FROCESS—-NAME, FARADIGM-MNAME)

{(FARADIGM~-MAME, STAGE-NAME)

(STAGE-NAME, OFTION-MNAME)

(PROCESS-NAME, OFTION-NAME)

The last of these is the relation with the transitive
closure property. The problem disclosed is thus. While
PROCESS—-NAME and OFTION-NAME are clearly unique across an
entire schedule (even if that i1s L1) it is not clear whether
or not FARADIGM-NAME and STAGE-NAME are. I+ they are then

the original relation becomes:

(FROCESS-NAME, FARADIGM-NAME, STAGE-NAME, OFTION-NAME)

In addition, each of the key components above has a truth
status and some kind of date-time group attached leading to
a very large (i.e., wide) relation to be maintained and
processed. This will cause enormous efficiency problems in
the chaining process since the inference engine wants a very
compact relation so it can load huge restrictions of it into

fast memory.

The obvious sclution is to have the user maintain f(or, if
possible, do it for him) a highly encoded identifier for the
key and for the DPTIDN-NAME such as a legal outline notation
(e.g., 42.2.1.2). The exception to this is that an OFTION-—-
NAME needs two identifiers: one within the process descrip-
tion; one independent of any process description (since it,
of course, can ocecur in several processes). S0 we will
obtain a relation in which the option is represented twice,
once as part of the process and once independently of any
superior process; and note that this is a general require-

ment, in any case, when we deal with option-—-sets.

(FROCESS~NAME, FARADIGM-NAME, STAGE-NAME, OFTION-NAME,

OFTION-FROCESS-NAME)

Now, since each component of the key needs a truth status
(T8) and date-time group (DTG) associated with it; and we
want to keep the relation seen by the inference engine as
small as possible; that suggests that we need a way to
normalize the relation that allows us to not have to
maintain all of these concurrently; i.e., once the option is
true, we don't need its truth status anvmore because the
stage is now true, and the same follows as we work up
through paradigm and process. Thus, if we construct the

code above to represent the key and call it FFS0O and call an

44

identical code OFFS0O to represent the independent process

identifier, we can create a relation as follows:

(FFS0, OFFS0, LEVEL, STATUS, DTG)

where LEVEL refers to what the status applies to:; i.e., the
process, the paradigm, the stage or the option. Hence, 1if
the level were option and the status was true, the inference
engine would know to stop loocking at any other options for

that stage and start looking for options for the next stage.

We will, of course, want to provide a relation, either
separate or with these included, that has the explicative
names for benefit of the user and even some explanatory text
but the inference engine need not be aware of this. If this
is done in a single relation it be slow because the infer-—
ence engine will have to proiect out all the text before it
can get to work. If separate relations are maintained, it
may appear to be a burden to the user but, in fact, is
probably not since the existing implementation allows
multiple relations, synchronized by a jioin clause, to appear

on the screen concurrently.

4.2.1.2. Element-Individual Relation. While
the part-whole relation determines that a process has

occurred because at least one option for each of its stages

47

has occurred, the element—-individual relation determines
that a process is, at least, possible because at least one
individual exists for each of its required elements. In
some ways this sounds a bit redundant; i.e., there are two
ways to reach a conclusioni but, in fact, that is not the

case.

In the early draftts of a schedule it may be somewhat
confusing to read because the formal elements of the process
will be very much interspersed in the procese descriptions,
while not yet having been recognized as formal elements.
Later dratts will read almost entirely like outlines of the
process/stage/stage-option (process) decomposition with very
few references to elements. And these are easier to read
since, if the stage-options are listed (which are, of
course, processes in their own right), it is only important
that a stage has or hasn®t occurred and if all of them have
occurred then it’s the case that the process has occurred

and the elements are no longer relevant.

However, at the bottom of the decomposition there are no
stage-options to check. The only criteria available are the
elements. l.e., at this level, there are no process
descriptions per se but only SA descriptionz which place
elements and individuals in a one—-to—-one correspondence via

eligibility rules.

48

The first problem to resclve is, again, the duplicity of

names. Every element requires a global (i.e., L1) name as
well as a name unique to the {(lower—level) process in which
it occurs. This is what will facilitate the forward-chain-
ing (bottom-up) that needs to occur when element-indiwvidual
data changes in thé database. Hence, the relation obtained
will be very similar to that used to capture the part-whaole

information:

(FFSO, OFFSO, ELEMENT, INDIVIDUAL)

Note that this provides a list for every FFSO of the
elements and individuals applicable, even though that FFS0
may, in fact, be (1. In addition, it allows that the
elements, the eligible individuals may vary from one FFS0 to
another - an essential requirement. Moreover, since a given
element and individual eligible to be that element, are
concurrently both independent of and in the context of a
particular process at any level, we can capture the L1

description by the relation:

(X, %, ELEMENT, INDIVIDUAL, RULE-NAME)

where the "Xx" indicates a an L1 (or "null") FFSO or,

alternatively, provide explicit values for the FFS0O putting

49

the description in the context of a particular process

without altering ites description in the L1 context [12].

4,2.1.3. Co-occurrence Relation. HNot surpris-
ingly, a relation that captures constraint rules has a
character very similar to that of the part-whole relation.
If elemenfs/individual names can be appended with FFS50
names to make them specific to a given process, then the
same principle can be applied to constraints (this is quite
different from the PROLOG approach in which all rules are
essentially global). Ignoring generality of rules for the

moment, the basic form of the relation is:

(CONSEQUENT-NAME, ANTECEDENT-NAME, STATUS, DTG).

If we embed the PPSO in the names of the ELEMENT and
INDIVIDUAL, we again create a situation in which rules can
be stated in any context (even L1) independently of any
other context - which is, for now, the desired result

[17]. To the extent that co-occurrence constraints only
involve stage-options [14], the basic form of this relation
is, again, that of the eligibility relation with both the
CONSEQUENT and ANTECEDENT slots being filled with OFFPSO

and FFSO names respectively. Hence:

(FFSO, OFFSO, S ATUS., DTG).

I+ these are stated within the context of a given process,
the intormation i1s probably derivable from the part-whole
relation, although at the expense of performing a proiection
of that relation. However, this constraint doss not

allow for an expedient treatment of global (L1) constraints.

4.2.1.4. Temporal Constraint Relation. As
long as we assume that stages occur one after the other. =a
relation to represent the sequentiality of stages 1s
probably not necessary as we can use some saort of encoding
of the FFS0O to represent that information. This is probably
a very idealistic situation and the principal motivation for
stage-sets [15]. In fact, in the general case, we probably
have an analogy of Gray’ s concurrency problem (161 which is
best illustrated graphically. I+ S1 represents stage one
and 52 represents stage two and they can be of varvying

durations then we can get at least all of the following

cases:
a) =1 —_
—_ 57 —
b) €1
2
St

s
d) 31 |
= !
t
e) 51 g
s2 —_—
£) S1 !
52 —
-
q) Si !

I+ S2 begins before S1 then we get all of the above diagrams
with the names interchanged. Note that the above cases are
only for two stages. For now, a relation that captures onlvy
this would be nice in the hopes that if it works for two it
will carry any multi-stage interdependenci=s but such is not

at all obvious yet and needs additional work [171.

The first problem to address is how to represent the
information in normal form. At first glance, at least the

following information is needed:

]
rJ

a)l that the start of 22 ic related to the start of S1i:

b’ the end of §2Z is related to the start of 51;

c) that the start of S2 is related to the end of Slg

d? that the end of 52 is related to the end of S1;

e) for each of the above, the kind of relaticnship,

i.e., before, coincident, or after.

This would yield a rather cumbersome relation for each pair

of stages that are temporally related:

(FPSO1,FFS0OZ, ¥S15,2E15, 251K, ZEL1E)

in which ySxS encodes whether y 3Starts before, coincident
with, or after x Starts, etc. This allows a stage to be
pair~wise temporally dependent on any number of other staqges
but does not, as previously stated, allow n-way depend-
encies among stages. Another apptroach that might work {(and
would certainly make the relation more tractable! would to
be replacing the four endpoint relationships with & =ingle
{or possibly two) state relationeship; e.g.. 52 can only be

occurring if 51 is occurring (has begun and hasm’™t ended:.

The two approaches may be equivalent but further analysis

is required.

The secornd problem to tackle is "what to do with the
information” once we’ve got it so we can determine a
sensible way to store the information for processing.
Whether the processing is a further complication of the
part-whole inference engine or a separate process that
independently generates data for the part-whole inference
engine can be taken up at a later time. For now, we

may as well think of it as a separate process since it's
certainly performing & drastically different function than

part—-whole inference.

The essence of the analysis at first glance seems to be that
of gueuing. The goal is to determine whether or not §2 has
occurred {(i.e., reached its endpoint) and that is dependent
on where 81 is as far as its state is concerned. And, in
turn, S1 mavy be similarly dependent on some other stagers:

(18]. Thus we can visualize each stagese of s process, and hhe

in

tate 1t is 1n (ot begun, kReginming, Socousring, Snding,

ended, =to.) as a "resouwce" for which other staoocsz ars

competing. I.2., when a stage 1=z analvisd, *the list of

Wi
i
|

tage/state combinations 1t requires to be 1n a given state

T

12 gueusd up against ths stages on which i+t depend=zs. Then,

periodically, the queued stages are compared with the

stage/state they are waiting for and those whose reguire-—
ments are szatisfied are dequeued and their state iz updated

C12].

While there are numerous solutions to queuing than encompass
the notion that a resource (or a request for it) can he in
numarous states, an approach analogous to Gray®s csecems a
natural starting place (since we began by stating the

problem in a way similar to his.

Before proceeding to develop a queue structure and protocol,

we need to solve two problems:

a) develop a compatibility matrix of states so that if
a request is that a state is occurring and the state
is beginning then it is natural to grant the
permission to continue (for the waiting stage to

move to the next state);

b) victim selection algorithms (these are, essentially,
the choice principles) so that if two or more stages
are deadlocked then the least likely can be removed
from the queue and restarted somewhere else (or
if it's already gqueued somewhere else, then let it

proceed there to see what happens).

w
w

The first of these seems rather straight forward although we
will have to come up with a number of states in which a
process can be other than those defimed in the transition
rules alone. The second seems difficult at best. There are
simply too many choice principles (as defined in FPlace [201)
and their totally content—free nature makes it doubtful
whether the system can determine which apply to which
situations. FPerhaps this is the one problem during the
prototype phase that we can "throw over the wall” to the
user. lI.e., when there is a conflict, the system can point

out the candidate victims but the user will make the choice.

4.2.1.5. Assignment Relation. As a project
proceeds, eligibility rules are tested by accessing the
underlying facts stored in a database and as historical
individuals are found that meet the constraints they are
actually assigned to be a given element of a process. This
information cannot be captured in the eligibility relation
because that would cause the eligibility rules to be lost in
the event that the individual is later de-assigred (e.g..,
due to a resource conflict) and would also preclude reuse of
the process description that lead to the current state of

the proiject at a later time.

The basic requirement is to create a relation thaet keeps

track of all the individuals that are available for assiqgn-

ment as well as their assignment status; either which
element (or elements in the case of resource competition)
they are assigned to or the fact that they are not currently

assigned at all.

An obvious solution to this relation would be

(INDIVIDUAL ,FFSO, ELEMENT, STATUS)

Note that, like it or not, the combination of FFS0 and
ELEMENT is a globally unique name and it could not be
otherwise since you have to know to which element the
assignment is being made [211]. If an individual is unas-
signed then the FFS0 will be null or L1 depending on how one
thinks about it. Tf an individual is pending assignment to
several elements, then there will be multiple entries in the
relation and the STATUS field will reflect the conflict.

And it may well be the case that an individual really is
assigned to more than one element (e.g., a single person is
frequently both the Principal Investigator and the Frodect
Manager). Hence, it really is necessary that all of the
domains in the relation are needed to form the key. Other-
wise, you would not be able to distinguish among the above
possibilities (i.e., when multiple entries for an individual

exist for different reasons).

4.2.1.6. Connectivity Relation. If all of the
above relations exist for a given FFS0 except the temporal
constraint relation (it has no entries for that FFS0) then
what we have is either an achievement description or a
process description [221]. If we proceed toc record the
before and after state of affairs related to a process, then
we need to capture the information relative to that connect-
ivity. {Interestingly enough, it is precisely that inform-
ation that represents the formal progress reporting of
conventional scheduling systems). Thus we need something of

the form

(BFFS0O,FPFSO, AFFSO)

where FFS0 is the process, and the other two are the before
and after states of the proiect (achievements). It°s
probably not the case that you can get away with only FFSO
as the key since you could have only one paradigm for the
process yet several paradigms for the before and after
states of affairs. The converse will not be the case since
each paradigm for the process has a unique name. There is a
legitimate question remaining when it is the casze that

the before and after achievements are the same, even though
they’re different paradigms:; i.e., can you eliminate the

paradigm information altogether [231.

4.2.1.7. Summary of the Normalization. The
basic relations summarized in preceding paragraphs would
appear to capture the information essential to both process
and achievement descriptions, at least as the inference
engine needs to see it. There will, undoubtedly, be
additional relations for the benefit of the user (explan-
atory names, textual descriptions, etc.) although the
inference engine will not require these even though the
essential relations could be automatically derived from
these in a later version. Many of the aforementioned
probleﬁs were not evident in the reference problem but they
all appear likely to occur in any reasonably complex
schedule and it is thus better to deal with them now since

they significantly complicate the inference engine design.

4,2.2. "Inference" Engine. An implementation of
a kKnowledge Dictionary System for scheduling support
necessarily includes the functionality to create, update,
and maintain the schedule description. This is already
exists as a prototype system developed partly prior to and
partly in connection with the investigation and is described
in Section Z.2.1. The work discussed in this section is
principally the development and augmentation of part-whole
inferencing to satisfy the requirements of scheduling

support.

4.2.2.1. Basic Part-Whole Inference. The
software for the basic process of part—-whole inference 1is
similar to but more extensive than rule processing. The
specific requirement to be satisfied by the basic part-—whole
inference engine is as follows. If Wi and W2 are schedules
(which may be parts of other schedules, etc.): and Wl is
known to have occurred if its stages, F1 and F2 have
occurred; and W2 is known to have occurred if Wl has
occurred:; then basic part-whole inference is capable of

inferring any or all of the following:

(a) if the elements of Fl and F2 have been satics-—

fied (i.e., there exists at least one individ-

ual eligible to be each element), then F1 and

F2 have occurred;

(b) if Pl and F2 have occurred then Wl has occur-

red;

(c) if Wl has occurred then W2 has occurred:

(d) if Wl has occurred, then the elements of F1 and

F2 have been satisfied:;

(2) if Wl has occurred, then Fl1 and F2I have

occurred.

4.2.2.2. Resource Competition. The bazic
process of part-whole inference, alone. is insufficient for
dealing with the resource competition problem posed by
scheduling. It it necessary to have a specific algorithm
for tracking resource competition, including the ability to
provide notification when such competition exists. The
algorithm is as follows. If Pl and PZ are both processes
serving as options of S1 and 82 regpectively and requiring
resources R1 and R2 respectively; and R1 and R2 are both of

type R; and R * F1 + RZ; the part-whole software needs to:

(a) detect this as a partial resource conflict;

(b) note F1 and F2 as being in conflict because of

Rs

(c) provide the information in (b) to the user on

request;

(d) +find a set of combinations of other options for
S1 and S2 {(Fx,Py)2 that do not conflict

because of R;

(e) provide the information in (d) to the user on

request;

61

(f) continue the analysis ot Pl and F2 1in terms of

their requirements for other resources.

By virtue of this algorithm, the user may suspend the
inference, substitute one of the (Fu,Fy), and restart the

inference from the point of conflict.

4,2.2.3. Temporal Conflicts. The basic
process of part-whole inference is also deficient for
scteduling in that it lacks a specific algorithm for
tracking temporal interference, including the ability to
notify the analyst when such interference exists. Such an
algorithm is defined as follows. If F1 and P2 are processes
serving as options of S1 and S22 respectively, and Fl cannot
begin until P2 begins (or occurs or ends, etc.); and P2 is
a process with a similar temporal dependence on Fil: and

these dependencies are in conflict; then the software shall:

{(a) detect this as a partial temporal conflict;

(b) note F1 and F2 as being in conflict because of

their temporal state (beginning, occurring,

ending, etc.);

(c) provide the information in (b) to the user on

request:

(d) find a set of combinations of other options for
S1 and 52 {{(FPx,Fy)} that are not in temporal

conflict;

(e) continue the analysis of F1 and F2 in terms of

their other temporal dependencies.

By virtue of this algorithm, the user may suspend the
inference, substitute one of the (Pu,Fy), and restart the

inference from the point of conflict.

4.2.2.4. Choice Principles. The basic process
for part-whole inference needs to be augmented with algor-
ithms for both the automatic and manual application of
choice principles. These algorithms shall accomplish the
following. If F1 and P2 are processes serving as options
for S1 and S2 respectively and F1 and F2 are competing for
an insufficient resource R, and there exists a stored choice
principle that states "anytime R is insufficient, the
scenario that requires more of R is less desireable," and F2
requires more of R than F1, then the software will automat-

ically:

(a)

(b)

(c)

Similarly,

cease to consider F2 in terms of R;

find an option for S2 (Fx) that reguires lecss

(or none) of R;

continue the analysis of SZ using Fx as an

option.

if F1 and F2 are in temporal conflict and there

exists a stored choice principle that states "any process

that began before another process with which it is in

temporal conflict is more desireable"” and FZ began after F1

then the software will automatically:

option.

(e)

(f)

cease to consider F2 in terms of its temporal

dependence on Fl;

find an option for S2 (FPy) that is not in

temporal conflict with Fl1 {or can begin earlier

than P1);

continue the analysis of S2 using Fx as an

If no stored choice principles exist, the software will

simply have to note the conflicts.

&4

4,2.2.35. FPropagation of Reports. The basic

part-whole inference process needs to be augmented with

specific algorithms to exploit intermired decscription types.

The algorithms shall accomplish the following. I+ 5a is the

achievement that exists before process Fa begins; Sab is the

achievement that exists after Fa ends but before process Fb

begins; and Fa and Fb are the only stages of process F

{i.e., P always occurs if Fa and Fb do), then the software

shall be able to infer at least any or all of the following:

(a)

(b)

(c?

(d)

()

if Sa does not exist then Fa cannot have begunj

if FPa has begun then Sa does f(or did) exist:

if Sab erists then Fa has ended:

if Fb has begqun then Sab does (or did) exist;

1f Sb exists then Fb (and consequently Sab, Fa,

and Sa) have all occurred;

if Sb exists, then F has occurred;

if F has occurred, then all of Sa, Fa, Sab, Fb,

and Sb have all occurred.

4.3. Prototype System Overview.

The knowledge necessary to perform and analvze comple:x
scheduling must eventually be stored and maintained in a
structured tabular form for processing by the part—whole
inference engine. The process of developing this knowledge
base typically begins with narrative descriptions of the
proiect; proceeds to more structured textual descriptions
(e.g., ocutlines, pseudo—codel); and concludes with an
admisztture of structured tables (for use by the inference
engine) and related discursive explications (for the
convenience of the user). BSuch a progression requires the
support of a word processor, a text editor, and a database
system. And because the discursive information persists
even in the final knowledge base, all three are required
concurrently and continually througho;t the scheduling
effort. While it may be possible to maintain the knowledge
base in three separate systems with appropriate intertaces,
our experience has been that a single system possessing the

combined functionality of all three is clearly called for.

Building upon earlier work [24], a Fnowledge Dictionary
System was implemented for the purpose of creating, updat-
ing, maintaining and searching a scheduling knowledge base.

This system combines, in a single integrated environment,

b6

functions of word processing, text editing, and databace
management. The functionality of this system 1s described

in Appendix A of this report.

A7

5. Scheduling knowledge Ease

The Fhase 1 investigation was done with respect to an
21isting reference problem to provide anm actual historic
particular basis in addition to a conceptual basis for the
investigation. The context of the reference problem

is the scheduling of the UTAIN/MAIS effort, information
about which was provided by the COTR. Within that context,
it was decided that the reference problem would be the
tracking qf compatibility between the UOperating System and
.the Networlk Software. This problem was chosen for several
reasons: it was sufficiently complex to test the power of
our approach; being purely technical, it did not require the
use of classified information; and, most importantly,

since none of the provided information was of sufficient
depth, it is a subiject with which we were sufficiently
familiar to be able to germerate our own data.

This section is divided into four parts: the first is a
parametric analysis of the 1ssues involved with Operating
System (0S) software, the issues involved with Local Arszas

Net (LAaM) scoftware, and their irnterrelationships. The

zecond 1= the techrnical devsioprnent oy & Zompatioiliis
matrix between the 05 and Lol sofbware ibthe Zoerz of the
rererence oroblemn . The third 1z 3 sTEnsrio descraotion

rarrativer for that problem 1n the contsut o+t the 1argsr

social practice of scheduling. And the fourth is th

mn

structured Social Fractice Description as implemernted

system.

&9

+

i

S.1. 0S/LAN Technical Issues. To understand the comple:x-
ities that arise in the scheduling problem as a result of
maintaining compatibility between the two major softwars
systems and their interfaces, it is first necessary to
understand something about each independently of the
other. This was accomplished during the investigation by
resorting to parametric analysis: i.e., identifying the
major technical issues of 0S5 and LAN software respectively
and decomposing them into successively smaller issues until
the point is reached that each issue is a "parameter" in
that, by assigning it a value (either gualitative or
quantitative), one characterizes the system of which it is a
part as different 1in an important way from some other system
that had a different value for that parameter. This
parametric analysis is presented as Appendix B of this

report.

70

J.2. 0S/LAN Compatibility Matrix. The compatibility
between the 0S and the LAN software was developed as a
matrix with the vertical axis corresponding to the 0S
parameters and the horizontal axis corresponding to the LAN
paramegters. Compatibility is stated at multiple levels of
the part-whaole hierarchy. Each statement is a relationship
name in brackets "Ilnamekl" that names the relationship that
the 0S component must have with the LAN component. The
matrix, due to its size, is presented in "strips" and
pages. The strip number refers to the sequence, from left
to rigﬁt, that the page would be placed if the matrix were
actually to be pasted together. The page number obviously
refers to the depth. The notation ":>>*" in the horizeontal

%is indicates that the column is above the following column
in the part-whole hierarchy. The part-whole depth in thes
vertical axis is represented by paragraph numbering and
indenture. The matrix is provided as Appendix C of this
report to illustrate the type of compatibility problems that

must be dealt with in the course of scheduling.

The matrix is largely vacuous because it became apparent
early in its development that the ability to process such
matrices was critical to demonstrating feasibility. Hence,

a compatibility matriu inference engine was developed.

71

5.3. structured Social Fractice Description

As discussed earlier, & Social Fractice Description 1s 2
formal definition represented as tables. The sccial
practice of scheduling a large and complex local area
network is presented in Appendix D and is compricsed of the
Social Fractice Description (SFD) table, and the Element-

~Individual List (EIL).

rJ

~!

S5.4. Scheduling Scenario Description

What transforms a social practice into a scenario are the
actual facts (historical particulars) about an occurrence of
the social practice. The scenario used in the investigation
deals with the construction of a distributed data handling
system (DHS). The scenario involves a prime contractor
(TRW), a subcontractor for the hardware (IEM) and a subcon-
tractor for the network software (DEC). This framework
provides the context for two maijior types of contingencies:
(a) delays in the installation of the hardware lead to
eventual delays in the installation of the software after
several revised completion estimates are generated; and (b)
opportunities for mismatches between operating system and
network components require systematic analysis grounded in
the compatibility matrix. The scenario is formally present-

ed in Appendix E as a Fact Table and a Fact Type Table.

6. Future Research and Development.

The principal result of the Fhase I sffort was the design of
and confirmation of the practicality of developing a
knowledge Dictionary System for scheduling support. The
immediate goal is to actually implement that prototype as an
extension of the implementation used and partly developed in
Fhase 1. A stand—-alone prototype for a Knowledge Dictionary
System capable of managing the knowledge necessary to
perform and analyze complex scheduling would provide a
tfoundation for both: (a) future research; extending the
problem domain beyond that of scheduling; and (b) future
development; engineering a maintainable and extensible
product that can be integrated with existing workstation,

network and mainframe environments.

6.1. Problem Domain Extensibility.

Dne important direction of future research is to exploit
the inherent generality of the SA technology upon which the
Fnowledge Dictionary System is built: and to demonstrate its

applicability to problems other than scheduling.

6.1.1, Decision Aid Framework. Scheduling, while

a significant problem in itself, is, on a larqger

]

cale,

merely an exemplar of the class of problems characterized by

the need to discriminate between what is actually happening
and that which was planned (or expected, or desired, etc.).
The two paradigmatic exemplars are: (a) control: altering

what is actually happening based upon what 1s desired; and

{b) forecasting; altering what is expected based upon what

is actually happening. Moreover, all of these fit the

even more general

value —->» action -> wvalue

framework of all human decision making. That is, actions
are undertaken in order to transform an existing state of
atfairs into & new one of a desireable sorty or in order to
prevent the state of affairs from changing into a new one
of an undesirable sort. State of Affairs (SA) Technology,
upon which the Fhase Il EDS is modelled [22] [261 [271].
effectively represents this framework by recognizing that
decision making is concurtrently both completely situation-—

—dependent and completely principled [281.

6.1.2. Situation Dependencies. The choice of an
appropriate action requires at least: (&) knowledge of
"thig" state of affairs; (b) knowledge of actions actually

avalilable in "this" state of affaire including limitations
imposed by limited knowledge: and (c) knowledge of the value

(desirability) of the "this" state of affairs and the

~)
]

consequent state of affairs if any of the actions actually
available are taken. Recause of this, deductivs schemas for
going directly from cobservable facts to observable actions
to observable consequences are not available az rigorous
methods [29]. The distinction in S5A between the elements
(abstract place-holders) of a process, and the histor-

ical, particular individuals eligible to be those =lements
in a given "instance" of the process (the assignment

relation) effectively models situation dependencies.

6.1.3. Choice Principles. Bv contrast, it is
also (and concurrently) the case that choices are not
arbitrary. Instead, they exhibit the inherent rationality
of decision making as exemplified by abstract, context-
~free maxims [20] such as: (a) 1f a person wants to do
something, he has a reason to do it: (b)) if a person has two
reasons for doing something, he has a stronger reason to do
it than if he had only one of those reasons (c) if a
person has a reason to do something, he will do it unless he
has a stronger reason to do something else instead: (d) if
the situation calls for a person to do something he cannot
do, he will do something he can do. These are all exemplars
of the completely general principle that "A person values
some states of affairs over others and acts accordingly"
{the value -* action - value framework noted above). AS

such, while SA descriptions do not prescribe which actual

76

choices to make in & given situation, they do operate as =z
logical constraint on the possibilities of choices and thus

effectively model the rationality of choice making.

In summary, the goal of future research is to exploit the
general decision making frameworlk inherent in the kKnowledge
Dictionary System and to demonstrate its applicability

control applications and forecasting applications.

6.2. Product Engineering.

A prototype knowledge Dictionary System for scheduling
support would provide a strong foundation for a maintainable
and extensible product that can be integrated with existing
workstation, network and mainframe environments. This
effort subdivides into two parallel but distinct efforts:

(a) software engineering; transitioning the prototype,
stand—-alone software to a level of quality consistent with
that of viable commercial products; and (b) knowledge
engineering; developing archetypal knowledge bases for the
major scheduling paradigms found in those Government and

commercial enterprises targeted as potential customers.

6.2.1. Software Engineering. Given the antici-
pated functionality of a prototype btnowledge Dicticnary

System for scheduling support, we expect there to be a

77

significant potential marketplace for a product of this
kind. But regardless of who the prospective customers may
be (these are discussed in the Section entitled Fotential
Fast Applications) the differences between a prototype and a
commercially viable product are significant in several
ways. As opposed to a prototype that is designed specific-
ally to demonstrate functionality, a commercial product 1is
designed to be: (a) supportable; the software must be
highly modular, well documented, and subiected to rigorous
systematic version and release control; (b) integrative;
the software must yield easily to coexistence with the
daminant operating system and database environments in the
mar ketplace; and literate; i.e., there must be a combina-
tion of user-oriented documentation and user-—-friendliness
sufficient to overcome the initial static friction so that

product acceptance can be obtained (311.

6.2.1.1. Support. The system used and
augmented during the Fhase I investigation is already highly
modul ar and possesses a well-defined protocol for implement-
ing additional functions. It is highly amenable to being
subiect to source code control since it is written in
Borland Fascal Version 4 which provides full support for
Unite and for separate compilation. The principal effort in
this regard 1s the documentation of the source code (notably

sparse in the existing sycstem).

78

6.2.1.2. Integration. Ac written, the
existing =ystem and, hence, any prototype derived from 1it,
iz well-behaved under M3-D0OS Z.x [3ZZ] and sbould run in any
upward compatible environment such as 0S5/% and any such
environment running as & task under another envirormment
(e.g., Unix, Novelle, Locues, etc.). To the extent that the
new environment provides additional serwvices that must be
requested (e.g., lock management) the modification to
access these services system is minimal. The existing
system contains its own file service through which all I/0
requests of the command modules are processed. Finally, and
mos=t importantly, the entire knowledge base is represented
as flat tabkles. By virtue of this, and in combination with
the internal +file service, modifying the system to utilize
parts (or =2ven all) of the knowledge base stored externally

in a relational database system is very straight forward.

6.2.1.3. Literacy. By far, the most dominant
effort in developing a product will be the preparation of
user manuals, tutorials and on-screen help as well as the
retinement (or possibly redesign) of the user interface and
the addition »f extra-system functions (i.e., access to

aperating system functions from within the KDS).

79

6.2.2. knowledge Engineering. As already
discussed as part of the technology that enables the KDS to
be effective, processes have paradigms (major variations?.
This fact is no less true for the procsss ot scheduling,
itself. Different organizations perform and analy:ze
complex scheduling in paradigmatically different ways. And
even within an organization, scheduling may be performed in
different ways &ccording to the task. For e:xample, a
defense contractor preparing a proposal is actually schedul -
ing (&) the proposal effort; (b)) the effort being proposed:
and (c) the actual effort if the proposal is successful.
Each of these will almost always be done by different
individuals, and wvery possibly in different ways. Just as
general purpose accounting systems are often delivered with
a set of pre-defined or partially pre-defined charts of
accounts for different types of businesses (i.e., give
the user someplace to start): so do we envision that the
Fhase III system will be delivered with a set of partially
pre-defined knowledge bacses, each corresponding to one of
the majior scheduling paradigms. This, too, will give the
uwser someplace to start; i.e.. for each project with which
he i1s confronted, he will be able to copy the most appro-
priate paradigm and then particularize it to the specific
project. The effort to accomplish this requires: (a)

paradigm formulation; the analysis that leads to the

selection of the scheduling paradigms: and (b paradiam

g0

description; the development ot representation units and

their elements that correspeond to each paradigm.

6.2.2.1. PFaradigm Formulation. Differant
paradigms of scheduling are not merely arbitrary variations
of scheduling, but are, instead, fundamentally ditferent
versions that are selected by a structured approach.
Tvpically, the fundamental difference that calls for another
paradigm 1is that the procese in one version has a different
decomposition than in another {(1.e.., the parts and the
part-whole relations are difterent) making 1t exceedingly
complex to describe merely in terms of co-occurrence
constraints. Discovering paradigms will be accomplished by
Faradigm Case Formulation (FCF) (371 [Z2431. The steps
in a PCF for scheduling would be ta: ia) select an example
0f a scheduling method (this 1s actually accomplished as a
result of Fhase II in that the reference problem aof 3 large
Dol proiect will serve as the exemplar) [Z5]1:; (b) hyvpothe-
size transformations of the parts and part-whole relation-
ships 1nherent in the paradigm case; (c) permute the
paradigm case by inducing the transformations: and (d)
zelect thoze permutations that are, themselves, both genuine
exemplars of scheduling armd correspond to (or arz applicable

to [Z4]) enterprises in the marketplace.

81

6.2.2.2.

selected scheduling paradigm,

perform and manage that paradigm will be developsd

Paradigm Description.

the knowledge

For each

necescsary t

5

stored 1n thz Krnowledoes Dictionary Svystsm = . parsdigm at
th=z level of L1, ard descending onily to lsvels oelow wihioh

baze have already been

aroposal. Aan

tions for a

The means

abbreviated

scheduling paradiam appears in

f+or constructing

Hdlscussed

gEscription

at length e

Table =

to &

the krnowledge

lsewhere in this

example of the proceszs descrip-

to

illustrate how the depth of description can be limited to

malke the paradigm usable for a class of proiects.

—FROFAR-

AN I s S0 S0 S)) O Y Y~ SN g [Y P 0 L Y Y Y I Y 0 N [5 T 0 N % 2 T O Y 5 T O T 50 T O T O S SNy WP s

S|

100
100

5TG-

e
T o Ty T
(A R S

-
!

O L L B R) B e e e O

-

@b e bidid R E R s e e T

~m e e e e e e m e e
T T T S S T T T T TS T TS
A ™ S S T

TABLE

-5S+0F T+

Q
)
)
0
8]
O
9]
0
i)
(o}
9]
Q
O
Q

R
-

- SCHEDULE PARADIGM (EBPU)

—05—FTYF

[y
-

E~

8z

ELEMENT-
“Obtain:
[User]
[Approvall
{Systeml
“Execute
[Contracts]
[5ysteml
“Decompose
[System]
[Subsystems]
“Develops
[Subsystems]
[Integration]
“Frocure’
[Contracts]
[Subsystems]
“Administer >
[Contractesl
[Subsystems]
“Review:
[Requirements]
[Subsysteml
“Review.:
[Concepts % Facilitiesl]
[Subsystem]
“Review’
CLFreliminary designl
[Subsystem]
“Reviewr
[Detailed designl
[Subsystem]
“Review’
[(Test readiness]
{Subsystem]
<Accept’
[Subsvstems]
[Contractors]
“Integratex
{Subsystems]
{Systeml
“Deliver
[S5ystem]
[User]
“Maintain:
[System]
[User]
“Procure
[Contractl

1

TABLE 3 - SCHEDULE PARADIGM (EPU) CONTINUED

—FRO+FAR-ST6+85+0OF T 05 —F TYFE 7—————ELEMENT —— . TS
106G s} 0O Oy X X[[Task] £
100 O 1 0O 200 ¥|<Develop: X
100 O 1 'y} b 3 ¥ LRFF] ¥
100 0 1 O S ¥ [Task] ¥
100 0 2 A W) X X< Submit > ¥
100 Q 21 A Q X ¥|[RFF1J ¥
100 QO 21 A Q X ¥|[Frocurement] ¥
100 O 21 B O X ¥|<Submit X
100 0 21 R QO X ¥x1IDD2541] X
100 O 2! B 0 X X|[Billet requests) X
100 O 2] B 0O X X1 [Security] X
100 O = 0 X ¥l Evaluate: X
100 0 A 0 X ¥ | [Froposalsl X
100 O 5 O 3 ¥|LTask] ¥
100 0 4 Q X X | “Recommend ¥
100 0 4 0 X ¥|[Froposall X
100 i) 4 Q X ¥|{[Procurement] X
100 O = QO X X| Assist: X
100 O 5 0 X X|IFrocurement] X
100 O 5) X ¥{[Contract]l X
100 ') 5) X ¥| [Negotiation] ¥
100 0 & O 3 ¥|<Accept: £
100 O & 0 X X|[Contract] ¥
100 0 & 0 X X[[Procurement] ¥
200 O 0) 3 ¥ |- Develop: %
A o i iy £ ¥ ORFFD *!
200 1 Q 0 k3 ¥ [Task] ¥
2000 8] 1 0 X ¥|“Freparex X
200 O 1) X x| 30wl X
200) 1 5] X X LTask] : ¢
200) 2 O x| ¥|<Freparex X
200 0 2) X ¥{[Schedulel X
200 0 z O X XiI[(Task] |
200 O ! O X X|<Frepare: X
200 0 = O X ¥X|[Technical criterial ¥
200 O = O X X|{[Task] X
200 9] 4 '] b ¥ Prepare: X
200 9] 4 Q X X | LEBudget) X
200 8 4 O ¥| [Task] X
700 O 5 9] b 3 X|“Frepare:x §
200) 5 0 X ¥ | [DD2541 X
200 O 5 0 X X{L[Task3 X
200 0 6 O X Xi<Frepare:- X
200 0 1) O X ¥|[RBidders list] X
200 O & 0 b & X|{[Task] ¥
Z00) 7 Q X ¥|“Prepare> ¥
200 0 7 0 X ¥|[(BFillet requests] X
200) 7) X X{LTask] X
200) 7 0 X | {Bidder] X

@
H

7. FPotential Applications.

The principal result of the Fhase I is a specification for

s

fully functional, stand—-alone prototype for & kKnowledge
Dictionary System capable of managing the knowledge neces-—
sary to perform and analyze complex scheduling associated
with large DoD projects. This result is immediately
applicable in both DoD agencies and in commercial organiza-
tions that engage in DoD contracting. Moreover, to the
extent that civil agencies of the Government employ a
similar scheduling paradigm, there would be the poatential
for additional applications throughout the Government and in
private organizations that engage in Government

contracting. (NASA would clearly be of primary potential in
this regard.) Finally, as a result of future research and
development, the KEnowledge Dictionary System would have
potential applications in both the Government and the
private sector; first, to scheduling problems employing a
wide variety of paradigms; secondly, to problems other than
scheduling, particularly control and forecasting problems;
and finally, as an integral part of large-scale data
handling systems directed at these praoblems that, to some
extent, are already in exicstence and have significant

inertia in both the operating and database environments.

7.1. Commercial Fost Applications.

The knowledge Dictionary System has the potential to be
commercially viable, both as a product and as a service, in
any private enterprise that engages the problems of schedul-
ing, control and forecasting at various levels of signifi-

cance.

7.1.1. Immedi ate Fotential. The immediate
commercial value of the KEDS is as a software product for
scheduling complex, DoD-like proiects that would operate in
any FC or compatible environment. The immediate customer
base would be organizations that perform this scheduling as
an ancillary function to their principal line of business.
This would require the establishment of both the marketing
and support functions either internally or through the
organization funding the Fhase II1I effort. For small
businesses or consultants, marketing would be accomplished
primarily through advertising and support would be of the
"hot-line" variety. For larqge DoD contractors, marketing
wor.ld be accomplished by on-—-site seminars and demonstra-
tions, and support would likely be provided as a separately
contracted =service to develop the complete knowledge base on

a project by proiject basis.

7.1.2. Future Potential. As the problem domain

expands during future research efforts, the base of poten-

86

~

tial customers would expand to 1nclude organizations that
perform scheduling, control and forecasting. Most import-
~antly, due to the increased sophistication of the product,
the base would now include organizations that perform these
functions as their principal line of business (e.g.,
financial planning, market research, investment brolkers,
etec.). This latter group is of particular interest in that
they are not already consumers of commercial software and
thus reprecsent a marget segment in which there 1s vet little
or no competition [371]. For large organizations of this
type, there is an added opportunity to market the KDS 1in
concert with ongoing consulting services to develop and/or
evaluate new paradigms in the principal line of business.
This is equivalent to obtaining significant amounts of
private funding from a variety of commercial sources to
support an ongoing reseatch program. Moreover, as the
results of this research have very close parallels to
intelligence analysis (see below), this, in effect, is

an unusual case whereby the private sector would be funding

the development of technology for DoD.

7.2. Government Applications.

The knowledge Dictionary System alsg has the potential to
serve the needs of the Government, and in particular, DoD.

EBesides offering to the Government the same potential

87

applications already noted as commercial, 1in the DoD
environment there are additional applications, both immed-
iate and future, that on the surtece appear to be quite
different but, due to the 34 technology that underliecs the

DS are, in fact, fundamentally similar.

The similarity lies in the fact that the KDS is not inher-
ently limited to just one world-view. For scheduling, only
one world-view 1s called for and the KDS compares reported
activity and/or achievements with the world—-view to irnfer
the disparity between what was planned and what is happen-
ing. For intelligence analysis, multiple world-views are
called for and the KEDS compares reported activity with each
world-view to infer which is most consistent with what is
happenihg. I.e., the world—-views serve as possible scenar-
105 as envisioned by the intelligence analyst; and the kDS
serves to notify him of which scenario appears to be
unfolding or, alternatively, that an anomalous scenario
unforseen by the analyst is unfolding and requires explana-
tion. This application is immediately applicable in any FC
compatible envirorment (e.g., the Zenith 248 Local Area
Network) and, as a result of product engineesring, could be
integrated with larger systems already supporting subztan-

tial databases.

88

8. References

L113. McCarthy, J., "Generality in Artificial Intelligence,"
Communications of the ACM, Vol. 70, MNo. 12, (December 1587)
pp. 1030-1035.

[2]. Ossorio, F.G., Schneider, L.S., Froposal for a
knowledge Dictionary System: Fhase I, submitted to the
Small Business Innovation Research Frogram, Rome Air
Development Center, Griffiss AFR, NY, 1786.

(Z]1. Ossorio, F.06., "What Actually Happens': The Repre-
sentation of Real World Fhenomena., University of South
Carolina Press, Columbia, SC, 1978.

f41. FPERT-based can and has been elaborated upon to deal

with additional complexities but is forever limited by its

foundation—-level representation of a projiect. The fundamen-

tal concepts of representation that limit its ability to

describe schedule complexities include: .

(a) a project can be represented as a two-dimensional

network of activities interrelated by time and
resource requirements;

(b an achievement (milestone) within a project can only
be attained by completing the activities in the
networt that precede it;

(c) the way in which one achievement is attained is
independent of the way in which other achievements
are attained;

(d) an activity invariably consumes specific resources
in known quantities;

(e) an activity invariably has other, specific activi-
ties as prerequisites;

(f) two (or more) activities that conflict in terms of a
given resource can only proceed if an additional
quantity of the resource is allocated;

(g two (or more) activities that conflict temporally
can only proceed if one or more of the activities

are re—scheduled;

89

(h) progress is the attainment of an achievement.

[s1. For 2:xample, the report that a unit test was succes—
sful may be made be made retroactively i1naccurate at a high
frequency during integration testing while the acceptance of
a deliverable does not need to be reconfirmed very often.
When such is the case, inference based on simple backtracki-
ng (confirming all the lowest level milestones, then all
next level milestones, etc.) is so impractical that, in
complex schedules, either the inference will never be
complete or will be hopelessly outdated when it does.

[61. For example, a report may indicate that all the
billets have been acquired and all the necessary contractor
personnel have been briefed, but the number of available
billets is insufficient for the number of contractor
personnel.

[71. For example, a schedule may require that the design of
a message passing protocol for a network be started long
before the design of the lower-level but less complex token
passing protocol but that both designs are complete before
the FPreliminary Design Review (FDR);: and that the design of
the application datagram formats, while having a temporal
relationship with the other two for commencement, have no
such relationship for completion since they are not a

part of the FDR.

£(81. For example, one report about the project might be
that the network is capable of managing distributed transac-
tions {a state of affairs report). Another might be that
the distributed transaction management software has been
successfully tested (an achievement report). And vet
another might be that the operating system is distributing
transactions among multiple servers (a process observa-
tion). Although all three reports are of a different
character, and may well have come from different sources at
different times, they are all reports of essentially the
same transtformation of the proliect.

(91. Using the prior example, the development of the
distributed transaction management software might obviously
be i1nferrec to be a part of whole task of developing the
operating system. But if the operating system calls for
distributed transaction management as a requirement, then it
must also be inferable that i the operating system is

Q0

developed, distributed trancsaction management will be a part
of that: and that achievement may well bz a part of saome
other schedule such as the development of the database
system.

C101. in fact, & major design goal of the prototype which
was successfully achieved was that all accesses to the State
of Affairs structure are "piped" through Sne common proce-—
dure. While a degree of efficiency 1ic sacrificed by

this architecture, the advantages cannot be overstated.
Integrating the State of Affairs System into either an
environment in which the State of Affairs Structure 1s
maintained in a centralized mainframe databacse; or one in
which that structure is maintained on one or more servers In
a distributed network; would require modification of less
than orne percent of the existing code. and that would
encompass no more that a straight forward engimeering
modificaticon.

C111]. The representation of date—time grocups 1in ths
reasoning chain 1s essential to the etficiency of hthe
process ‘1t would literally be 1mpossible to comtirmuaily
attempt to reconshtruct everything from the atomic factzsy and
represents the fact that some reports are nighl. durabk]l -
while others are very transient.

(127, The quecstion of "generalization" or "inheritance"
becomes verwv important at this point. Will 1t be the case
that, for example, an eligibility stated at L1 will auto-
matically apply to any sub—context? Given the issues of
mere description versus classification versus appraisal such
a decision requires some thought. Note that the person
maintaining the knowledge base and the person using to draw
conclusions may be different and one may be using the
generalization property to mean something different than the
other and this could lead to serious misinterpretations.

£1Z3. One can argue that while individuals do, in fact,
require global names for dealing with resource competition,
elements do not require a name outside the context of the
process in which they occur. However, in order to make an
historical assignment of an individual to an element, you
have to know 1n which process the assignment occurs. Thus
every element name will have to be tagged with the FF3S0 name
which necessarily makes element names uniqgue. This will
become apparent 1in the discussion of the assignment rela-—
tion.

g1

£141. However, i+ co—-occurrence constraints anmd eligibili-
ties become intermingled {(e.g., a given eligibility only
applies if a given co-occurrence constraint is satisfied)
then a more complex structure for all eligibility con-
straints needs consideration. A general FPROLOG-1like rule
structure would probably work (and would be feazible given
that BRorland Fascal Version 4.0 deliverse on it’s promise of
FASCAL~-FROLOG linkable obiect modules) but would incur the
traditional inefficiencies of that approach.

[1s1. There are two obiectives in conflict here. Literally
speaking, the '"stages'" of a process are sequential and, in a
schedule, a lot of attention is focused on stages because
that is where, in the process, that things come together
(perhaps this is a case of looking under the lamppost for
the lost key given the present limitations of scheduling
systems). But within a stage there is a great deal of
temporal complexity which, if not dealt with explicit-

ly, will cause conflicts due to cross—constraints to be lost
in the shuffle (i.e., they will appear simply as two or more
stages in different processes that are behind schedule
without any recognition that the reason they are behind is
that they are in competition with each other).

[161. OGray, J.N., "Notes on Database Operating Systems”, in
Operating Systems: An Advanced Course., vol. 60, Springer-—
-verlag, 1578, I93-481.

[17]. Note that it may also be the case that stages of a
process don’t have any temporal dependence. E.g., both
stages have to occur in order for the process to occur but
either camn occur at any time independently of the other.
Depending on the chosen solution, this may simply be a null
case that does not require any further analysis.

£181. And herein lies the hope that the process can be
recursive as previously discussed, although this may only be
the case if we do, in fact, view it as a gueuing problem.

[19]1, Of course, there must be some stages that have no
dependencies or the process can never start:; and there can’t
be any cycles in the description of the dependencies or the
process will simply stall (although dynamic cycles can

occur but more on that later).

[20]. Ossorio, F.G6., Flace. LRI Report No. IZ0a, LRI, Inc.,
Boulder CO, 1982.

[211. At this point, the question really becomes one for
the user. I+ he finds it useful to develop a systematic
element naming system in L1, there’s nothing to prevent his
doing that. If the element names are arbitrary except

in the context ot a process, then that’s fine too.

£z221. This is why it was probably & good idea to model on
the process description since it can get considerably more
complex than the achievement description.

[2%1. Strictly speaking, we take it to be the case that any
paradigm of a process always has the same betore and after
states of aftairs; i.e., They are ditferent versions of the
samz process. On the other hand, it is often the case that
the reason for having two paradigms is that ocne will work
under a given set of conditions (i.e., state of affairs)
while another will not. Until we achieve further resolution
of this issue, we use the term "paradigm" to denote any
version of a process that has the same elements although
with possibly different eligibilities. Versions with
different elements are considered to be different proces-
ses. The intent is to focus on different decompositions of
the same process.

(24]1. Ossorio, F.G., Schneider, L.S5., Final Technical
Report, Contract F-2060Z-85-C-0120, Rome Air Development
Center, Griffiss AFB, NY, 1987.

[2513. More precisely., the Fhase I KEDS is modelled on & re-—
stricted subset of SA that deals only with the concepts of
process and achievement, i.e., those concepts essential to
the problem domain of scheduling (actually, the subset of
that problem domain that we chose as the reference problem
of the Fhase I investigation). In a system modelled on an
unrestricted SA the articulation of the concept of reality
is accomplished by reference to the four basic consti-
tuents, namely, "obliect," "process," "event, and "state of
affairs,” and their further development. Note that these
are not invented technical termes. Rather, they are already
straight—-forwardly concepts of reality or the real world. Al
primary and paradigmatic use of these concepts is as the
categories of "what there is." Also, and by no means
unrelated, the four concepts are observation concepts - we
observe exemplars of each kind. The fact that our separate

"

=

observations can be formulated as cobservations of a single
worlds i1.e.,
relationships among the concepts in terms of which our
obhservations are made and our world described. These are

expressed as a set of transition rules. L

[2&6]. The transition rules for an unrestricted 54 system

are:;

T1)

T2)

T

T4)

T&)

T7)

)

T

TLO

Ti11)

the real world, regquires that there be logical

A state of affairs is a totality of related
obiects and/or processes and/or events and/or
states of affairs.

A process (or cobliect or event or state of
affairs) is a state of affairs which is a
canstituent of some other state of affairs.

An obiect is a state of affairs having other,
related obiects as immediate constituents (an
obiect divides into smaller, related ob.iects).

A process 1s a sequential change from one state
of affairs to another.

A process is a state of aftfairs having other,
related processes as immediate constituents (a
process divides into related, sequential

or parallel, smaller processes.

An event is a direct change from one state of
affairs to another.

An event 1s a state af affairs having two
states of affairs as constituents (i.e.,
"before" and "after").

That a given state of affairs has a given rela-
tionship to a second state of affairs is a
state of affairs.

That a given obliect. process, event, or state
of affairs is of a given kind i1s a state of
atfairs.

That an obiject or process begins is an =svent
and that it ends is a different event.

That an obiect or process occurs (begins and
ends) 1is a state of affairs having three states
of affairs as constituents (1.e., "before,"”
"during," and "after'),

94

[271. The limiting cases for an unrestricted SA system are:

L1) The state of afftairs which includes all other
states of affairs (i.e., a world view).

L2) An obliect that has no constituents, hence is an
ultimate particle (i.e., a stubbed-off obliect
definition).

LZ) A process that has no constituents, hence no
beginning that is distinct from its end (i.e.,
an event).

L4) An event that has no constituents, hence the
equivalent of an object during a period during
which the object undergoes no change (i.e., a
timeless state of affairs).

(281. Ossorio, F.G., Schneider, L.S., Decisions and
Decisicn Aids, LRI Report No. 31, Linguistic Research
Institute, Boulder CO, 198Z.

[(292). To be sure, we sometimes employ logical or mathemat-
ical algorithms as definitions of actions, but only after
the prior decision has been made that in "this" situation
(or this kind) such a schema is relevant. FKElindly following
a formula which says "Whenever X do YY" where X and Y are
concrete descriptions of facts and actions (e.g.. Whenever
you’re outnumbered, retreat.) is a prescription for disas-
ter, for such a formula will have genuine value only under
extremely limited conditions and cannot provide a general
basis for decision making.

[Z0]). Op. cit. Flace.

£=11. This is, perhaps, the most critical issue to be
addressed. fMNotably successful products have, in general,
been introduced with a plethora of manuals, tutorials,
menu~driven interface options, and on-screen help functions,
most of which are ignored by the user soon after installa-
tion; but without which the user would never have even
attempted ta try the product. And this is especially

true for 2xtremely powerful systems due to their necessarily

inherent complexity. WordFerfect (551 Software), the most
widely used word processing software in FC environments, is
a naradigmatic case in point. By contrast, TE!'Scolver

5

(‘7

(Software Arts, Inc.) may be the most powerful spreadsheet
program ever developed but was notorious as & product
outside of a very select community of engineers.

[Z2]. The only exception to this is screen I/0, which is
discussed in the Section entitled Installation, and which
would only be potentially problematic at the level of
individual workstations.

233}, Ossorio, FP.G., "Conceptual-Notational Devices,'" in
Davis, K.E. (Ed.), Advances in Descriptive Fsychology
(Vol. 1, pp. 83-104), JAIl Press, Greenwich, CT, 1981.

[Z4]. The formal definition of FCF is inductive as follows.

FCFy, ::= I. Introduce a Faradigm Case of X.
II. Introduce transtformations of the FParadigm
Case.
FCF ::= I. FCF,.
II. Ti. The number of Faradigm Casecs are k
1.
T2. The Paradigm Case is a generator of
X.

T3. The Transformation of a Faradigm Case
is a FParadigm Case.

T4. A Transtformation may be any func-
tional equivalent thereof.

[Z5]. While the choice of a paradigm case is conceptually
arbitrary, in practice it will make a difference and
sometimes a crucial difference. The choice of the reference
problem as the paradigm case was made in accordance with the
following rules of thumb developed through experience with
FCF. The first is that the paradigm case be the most
complex case so that the tranmsformations are also simplifi-
cations. The second is that the paradigm case be indubit-
able. I.e.. if ever there were a case of a scheduling
problem, that”s one! The final rule is that the paradigm
case be in some relevant sense a primary or archetypal

case. This gives formal recognition to the fact that the
other cases generated are cases because of their relation
via the transformations to the paradigm case:; and, hence the
transformations serve as explanations of why the paradigms
are different.

[Z61. The effort is not an investigation to discover new
ways to perform scheduling. However., by virtue of using
PCF, the effort potentially has this benefit as a side—-ef-
fect. it is possible that FCF will vield a scheduling
paradigm that, while exhibiting very desireable charac-
teristics and applicability, does not appear to be in use bv
anyone. FCF is analogous to a Zwicki Morphological Anxlysis
in this regard.

{Z71. While they may employ commercially available systems
to support these as internal functions ancillary to their
line of business, whatever software they use in support of
their product (e.g.., a stock market forecast) is typically
developed in—house and preciously guarded. Since the KDS is
particularizced by the content of the knowledge base, not by
the software, such organizations could obtain the many
benefits of EDS without compromising proprietary know-
ledge.

97

A Knowledge Dictionary System for Scheduling Support

P.6. Ossorio and L.S. Schneider

Appendix A

Submitted by

Linguistic Research Institute, Inc.
5600 Arapahoe Avenue
Boulder, Colorado 80303

Submitted to
Rome Air Development Center
Griffiss AFB, New York

I8

TABLE OF CONTENTS

1. Frototype System Overview.+ « « . . 122

2 User Interface Environment. e & e e & e « = < « 104

. Fl1lesS. o« « o ¢ o o s s 2 « o o 8 « = 2 = « 2 « « 106

4, WindOWS. o« ¢ ¢ o 2 o 5 4 & 2 o 5 o « = « « « « - 108

5. Transactions. S O s

6. Relations. ¢« o o « « o o e 2 « o « « « = « 2 « « 113

. AUErieS. +« « « o« « o 2 s s a o a2 a a a o« « « = « 115

8. Scan. e e

?. JOPACES. 5 » 2 & s & = 5 % = & & e = e o« o« . . 122

10. Engines. © s s s e & s s m s e x s w e s e s e w s e« 124

11, Miscellaneous Commands. .« + + « & « * « s = « s « « » 130

12. Macro CommandS. .+ « o o 52 s o« « e o s s » s = 2 « « . 142

99

e

13, Installation. . .+« « o « « & « & & 2 e = . . . 147

14, ReferenceS. « « « « « = = « = ¢ o & & & o = . - .« 144

100

LIST OF EXHIEBITS

r)
Q0

FIGURE 1 — TYFRICAL SCREEN« « o . & o « « .+ « . o« o 12

t)
]

FIGURE 2 - FPULLDOWN MENUS . . . « . & & & & & « & « & » « 1

101

1. Frototype System Overview.

The knowledge necessary to perform and analyze complesx
scheduling must eventually be stored and maintained in a
structured tabular form for processing by the part-whole
inference engine. The process of developing this knowledge
base typically begins with narrative descriptions of the
project; proceeds to more structured textual descriptions
(e.g., outlines, pseudo-code); and concludes with an
admixture of structured tables (for use by the inference
engine) and related discursive explications (for the
convenience of the user). Such a progression requires the
support of a word processor, a text editor, and a database
system. And because the discursive information persicsts
even in the final knowledge base, all three are required
concurrently and continually throughout the scheduling
effaort, While it may.be possible to maintain the knowledge
base in three separate systems with appropriate interfaces,
our experience has been that a single system possessing the

combined functionality of all thre= is clearly called for.

Building upon earlier work [11, & Knowledge Dictionary
System was implemented for the purpose of creating., updat-
ing, maintaining and searching a scheduling knowledge base.
This svstem combines, in a single integrated environment,

functions of word processing, text editing., and database

102

management. The functionality of this system 1s as follows.

10=

2, User Interface Environment.

The user is typically presented with a screen such as
illustrated in Figure 1. The first line is referred to
throughout as either the Status Line or Command Line.
Underneath the Command Line is the Menu Bar, and beneath
that are two windows of data. The Status Line conveys
information about the currently active window. In the
illustration, this indicates that Window 1 is opened to a
file called KSCA\DATA\NINSTAL which is 285 characters wide and
contains 124 rows (the remainder of the information on the
Status Line is explained subsequently). The Menu Bar is an
array of headings, each of which correspond to an obiect
upon which the system can operate. These obiects are Scans,
flueries, Transactions, Windows, Files, and Relations. The
tunctions of which the system is capable can be accessed in

any of three ways.

2.1. Menu Bar. The menu bar represents the maljor
functions that can be executed by the user. The menu bar is
activated by F10 and the submenus are selected either by
positioning with the arrow keys and pressing CR or by typing
the capitalized letter of the selection. ESC backs out of
any menu selection and a second ESC deactivates the menu
bar. For example, typing F10, moving the cursor across the

File heading, pressing CR, moving the cursor down to the

104

Quit selection and pressing CR again will vield a prompt on
the Command line "“KX Exit (Y/N)7?" Typing a "vy" will exit
the system. The same function can be accessed by typing
Fi1o, F (for File), @ (for quit). Not all of the available
functions are accessible from the menu system. The submenus

are illustrated in Figure 2.

2.2. Control Keys. Every available function of the
system is accessible via special keys (e.g., arrow keys,
tab, etc.) and one or two key sequences of control charac-
ters. In the above example, note that the prompt was
preceded by ""kX" which is the control key sequence for the
Quit function. I.e., holding down the Ctrl key, type kx and

the same prompt will appear.

2.3. Macro Commands. Any combination of commands and
responses to prompts can be invoked from the keyboard. A
Macro Command 1is an ASCII file of a sequence of keystrokes
and referred to by the name of the file in wh;ch the
keystrokes are stored. A Macro Command is executed by
typing F9 (which returns the prompt "Execute File:") fol-
lowed by the file name and CR. This will cause the system
to respond sequentially to each character in the file as if

it had been typed from the keyboard.

1035

3. Files.

A file is a data stream which can be viewed or modified
through a window. Files are of three types: Tables, Text
(a table with one column), and Documents (a "table" with no
columns). To both the system and the user all types are
pretty much the same except some functions behave differ-—
ently for each type and not all functions are applicable to
all types. The operations that can be performed with files

are as follows.

3.1. Open File. A file can be OFPENed in a window. This
makes the file visible to the user and available for

searching or updating.

3.2. Close File. A file can be CLOSEd, i.e., made

invisible and unavailable for searching or updating.

3.3. Read File. Internally, files are maintained in a
unique structure to facilitate the various operations of the
system. But if the user has a standard AS&II file (e.g.,
produced by another program) it can be read in its entirety

into the system and converted.

3.4. Write File. A user can alcso WRITE an entire file 1in

standard ASCII format.

106

3.5. Top File. This positions the cursor to the first

character of the first row of the file.

3.6. Bottom File. This positions the cursor to the last

character of the last row of the file.

3.7. Synchronize File. Unlike typical word processors or
text editors, the system does not read the entire file into
RAM for processing. It, instead, employs a caching scheme
whereb; only the data most needed is resident in memory.
Unless the user takes advantage of Transaction Management
(see below) it is advisable to periodically SYNCHronize the
file; i.e., force all changes to be recorded on the disk;
Just as one would periadically save a file when using a text

editor.
3.8, Quit. This is a quick shutdown function to synchro-

nize and close all opened files and exit to the operating

system.

107

4. Windows.

Windows are viewing areas on the screen consisting of 1 or
more display lines. New or empty windows are attached to
temporary files called TEMF1, TEMFZ, etc. and will remain so
until the window or file is closed (if the user wants to
save a temporary file, the system will prompt him for a
permanent name),. The operations that can be performed with

windows are as follows.

4.1. Select Window. To operate on data in a window it
must be SELECTed, i.e., made the current window. The cursor
appears in only the current window and the Status Line

always refers to the current window.

4.2. Open Window. A new window can be OFENed, i.e., made
to appear on the screen. The user must always specify how
many rows the window will contain (its length) and which
existing window it will gverlay. A window can be opened
directly to a file or it can be opened empty in which case
the user must specify how wide (in characters) the window

should be.

4,3. Close Window. An existing window can be CLOSEd
(removed from the screen). I¥f the window is opened to a

user file, the file will be closed automatically. I+ the

108

window 1is opened to a non-empty temporary file, the user
will be prompted for a file name 1f he wants that file

saved.

4.4. Clear Window. Clearing a window is identical to
closing it except that the window will remain on the screen

attached to an empty temporary file.

4.5. Link Window. A window can be linked to the same
file to which an existing window is already opened for the
purpose of having two or more areas of the file visible at
the same time. Changes made to the file from any of the
windows will appear in all of the other windows (immed-

iately, if the viewing area overlaps).

109

S. Transactions.

Changes to the data may, at the users option, be qoverned by
& transaction management protocol. A transaction is a
sequence of changes that are: atomic; i.e., either they all
occur or none of them do and durable; i.e., once made, they

can only be changed by another transaction.

S.1. Begin Transaction. EEGIM starts a transaction. 1t
has the effect of establishing:én opening parentheses in an
equation in that everything within the parentheses will be
treated as an atomic unit. When a transaction is begun, the
status line will be augmented to indicate the number of rows
that have been changed since the transaction began (Log) and
the remaining capacity of the log., in rows, to absorb
further changes (once a row has been changed, further

changes to it do not require additional log capacity).

S9.2. Commit Transaction. COMMIT ends a transaction
favorablys; i.e., it has the effect of establishing the
closing parentheses and then performing all the changes that
occurred within the parentheses by applving the changes to

4

he disk.

3.3. Abort Transaction. ABORT ends a transaction

unfavorably:; i.e., it has the effect of establishing the

110

closing parentheses and then undoing all the changes that
occurred within the parentheses by restoring the disk to the

way it was before the transaction began.

S.4. Enter Transaction. If a transaction has begun in
one window, the user may desire to have changes in another
window be a part of that transaction (i.e., they will have
the same destiny as that transaction when it ends). This is

accomplished by entering the tramsaction.

Z.3. Leave Transaction. Once a transaction has been
entered, the user may desire that the fate of the changes in
a window not be the same as that of the transaction. This

is accomplished by leaving the transaction.

S.6. Share Transaction. If two or more windows are open
to the same file (or in a multi-user environment, two or
more users have a window open to the same file) the user who
begins the transaction can designate that the transaction be
shared. I.e., the file will appear in all windows as if the

transaction were going to be committed.

9.7. Exclusive Transaction. By contrast to a shared

transaction, this option provides that other windows open to

the file will see it as it was before the transaction began

111

no rows 1in the file that have already been accessed by the

transaction can be changed until the transaction ends.

S.8. Scan Transaction. This function allows the creation
of a scan (see below) of all rows that have been changed
since the transaction began. (If a row has been deleted, it
will not be included in the scan even though it will be

un—deleted if the transaction is aborted.)

112

S

6. Rel ations.

)
Relations (tables) are the common format in which all files
are viewed. A relation consists of zero or more columns,
each having a unique name within the file {(Documents, i1.e.,
tables with zero columns, do not have column names and
cannot be the obiect of functions that require column

names) .

6.1. Create Relation. New relations can be CREATEd. To
do sa, the user responds to the prompt "Header:'" by typing
dashes (~) followed by the column name followed by more
dashes and a vertical bar (i) as the column separator. The

dashes are optional as in the following example:

~——--Name—-——— | ——————— Address————————- {AREA I ~Z1IP~}

6.2. Align Column(s). The data in the columns can be

re~ALIGNed - either left, right or centered.

6.3. Sort by Column(s). The rows can be SORTed according

to the value of one or more columns.

6.4. Add Column(s). A new column can be ADDed TO a rela-

tion. The system will prompt for the name of the column

113

after which the new column(s) is to be added and then prompt
for the header which is specified in the same way as for

creating a relation.

6.5. Drop Column(s). An existing column can be DROFped

FROM a relation.

6.6. Change Column. An existing column can be CHANGEd.
The system will prompt for a new header as in adding a
column. The new header may be smaller or larger in width

thanmn the old one.

6.7. Switch Columns. Two existing columns may be

positionally interchanged.

6.8. Unique. This command removes adiacent rows from a
relation that have identical values for the specified
columns. In response to the "Unique:" prompt the user types
columnl, column2,...columnN. Specifying "s" in resncnse to
the "Options:" prompt will cause the table to be sorted on

those columns before the command is executed.

7. Queries.

Queries (searches) may be executed by a user upon a file.
The results of a query may be represented by: positioning
the tables in the windows (the default); creating a scanj; or
writing to another window. All query types involve matching
of expressions to values and the following wild-card syntas
is supported: "\?" matches any single character; "\#"
matches any single digit; "“\Xx" matches any string of
charécﬁers; "\$" matches any string of digits: and "*"
matches "\'". Furthermore, all query types support the

fellowing "Options: "

ta" - locate all occurrences (the default is to

locate Jjust the first or next occurrence)

"o - output the results (the system will prompt

for the window number)
"g" - include the results in a scan
Hatt = execute the search immediately (the

default is to wait for an explicit command

to begin)

- ignore case (the default ic case sensi-

tive)

- whole word matches only, 1.2.., the
matching value must be delimited at both
ends (e.g., by space, comma, periocd,

etc.).

Once a query has been defined it may be re-esuwescuted using

elither the NEXT @ntry on the menu or the Ctrl-i key [Z].

7.1. Find. FIMD locates occurrences of a specified value
anywhere in a file. In response to the prompt "Find:" the

user types the pattern followed by CR.

7.2. Replace. REFLACE locates occurrences of a specified
value anywhere in a file and replaces it with a specified
value. In response to the prompt "Find:" the user types the
pattern followed by CR. Then, in response to the prompt
"Replace with:" the user types the value to be substituted
and CR. There is an additional option unique to the Replace
command. The option "n" indicates to perform the replace-
ment without confirmation by the user. The default is to
ask the user +for each occurrence whether to perform the

replacement or not.

116

7.3. Keyword. KEYWORD locates the conjunction of
specified values in the same row anywhere 1n the file. In
response to the prompt "Keyword:" the user types valuel %

valuel %...% valueN.

7.4. Select. SELECT locates rows whose column values
match a specified value. In response to the prompt "Sel-
ect:" the user types columnl = valuel % columnZ = valueZ

%...% columnN = valueN.

7.5. Project. FROJECT takes all the rows from a table
but only the specified columns and writes them to ancother
window. The "a" and "o" options are both default and
mandatory. In response to the prompt "Froject:" the user

types columnl, columnZ,....columnN.

7.6. Join. JOIN concatenates two tables based on
matching values in the specified columns of each. in
response to the "Join:" prompt the user types A.columni =
B.columnlt % A.columnZ = B.column2 % ... where A denotes
the number of the window to be Jjoined to B which is the

current window.

7.7. Union. UNION combines two tables of the identical

format into a single table. The "a" and "o" options are
default and cannot be overridden. In response to the prompt
117

"Union:" the user types the window number containing the
tables to be unionized with the table in the current window

[3].

7.8. Difference. DIFFERENCE searches two tables of
identical format for rows that are based on not matching
values in the Spec;fied columns of each (i.e.,‘a row in
either table qualifies if there is no row in the other table
that has equal values in the specified columns). In
response to the "Difference:"” prompt the user types
A.columnl # B.columnl % A.column2 # E.columnZ % ... where A
denotes the number of the window to be compared to B which

is the current window (41].

7.9. Next. NEXT re-executes the currently defined query.

7.10. Clear. CLEAR clears the definition of the

currently defined query.

118

8. Scan.

A scan is a subset of a table. It can be produced by a
query, an engine, or the user. A scan is also persistent;
i.e., the scan i1s not lost when a file is closed. 0Only one
scan per table is presently supported. When a scan exists,
those rows that are included in the scan are displayed in
highlighted text on the screen. Scans can be created in any
type of file including Documents. In this capacity, it
similar to the "block" commands found in word processors but
is sliéhtly more flexible in that while a "block" must be
contiguous, a scan can include any lines scattered through-

out the file.

8.1. Include. A user can manually INCLUDE the current

row (the row the cursor is on) in a scan.

8.2, Exclude. A user can manually EXCLUDE the current

row from a scan.

8.3. Begin/End. A user can manually include a contiguous
set of rows in a scan by Beginning a scan at the current
row, moving the cursor to some subseguent row. and ENDing
the scan. This will include all the rows, inclusively,

between the begin and end commands in the scan. Once a

119

BEGIN command is issued, an "S" will appear on the Status

Line until the END command is issued.

8.4. Clear. A user can CLEAR a scan; i.e., e2xclude all

the rows from the scan.

8.5. Read. A user can READ a scan from another window
into the current window. If the scan to be read is from a
table, the current window must either be a table of ident-

ical format or empty.

8.6. Write. A user can WRITE a scan in the current
window to another window. If the current window is a table,
the destination window must be a table of identical format

or empty.

8.7. Next/Prior. A user can position the cursor at the

NEXT or FPRIOFR row of a scan.

8.8. Delete. A user can DELETE a scan in its entirety

from the table in the current window.

8.9. Move. A user can MOVE a scan in the current window
to another place in the file. All the rows 1n the scan,

whether contiguous or not, will be deleted from their

120

present position and inserted contiguously at the riew

position somewhere else in the table.

8.10, Copy. A user can COFY a scan in the current
window to ancther place in the file. All the rows in the
scan, whether contiguous or not, will be inserted contigu-

ously at the specified position in the file.

121

9, JSpaces.

Judgement Spaces are "inferential indexes" through which
queries may, at the user’s option, be resolved; i.e., the
"matching” of expressions is not done by lexical analysis,
but by locating values that are close together in a multi-
~dimensional factor space based on user Judgments. A JSpace
1s created from a table whose columns represent a set of
user—-selected variables and whose rows correspond to the
rating of rows (or a sample of rows) from an existing table

against each variable (51].

9.1. Create. A user can create a JSpace index. In
response to the prompt "Create Index:” type the name of the
table that caontains the user judgements. if no name is
specified (i.e., typing <CR> in response), the system will
create an ordinary lexical index. In response to the prompt
"tength:” the user types the size, in characters, of the
terms (keys) in the current window to be indexed. If no
length is specified (i.e., typing <CR»*» in response), the
system will use the length of the row as the default. Note
that, unlike the query commands, there is no reference to

column names. The progress of JSpace creation is displaved

on the status line.

122

9.2. Remove. A user can remove a previously created
JSpace by typing its name in response to the prompt '"Remove
Index:". If no name is specified, the default lexical index

is removed.

9.3. Dpen. A user can open a JSpace by typing its name
in response to the prompt "Open Index:". I+ no name is
specified the default index will be opened. This means that
all matching done by queries and engines will be done via
the open JSpace. While a JSpace is open, "IX:iispname”

appears an the status line.

?.4. Close. A user can close a JSpace by typing "Y" or

y" in response to the prompt "Close Index:s (Y/N)7?"

?.5. Sync. A user can cause an index to be synchronized
by typing a "Y" or "y" in response to the prompt "Synch-
ronize Index (Y/N)?" This causes any changes to the index
that have yet to be made asynchronously to occur immediate-

ly. Synchronization is not permitted during a tranmsaction.

16, Engines.

Inference engines are, in effect, very complex queries;
complex principally in the fact that they cannot be quanti-
fied. [I.e., unlike relational queries for which the
criteria can be specified in advance, the criterion is
dynamic and self-modifying as the query proceeds [6]. The
system has only one such engine presently implemented, the
CLOSURE engine, but several more are anticipated as a result
of the Fhase I investigation and will be briefly described

as if they existed (7).

10.1., Closure. The Closure engine takes one row of
single table and produces the closure (8] of that table
based upon two or more columns and constant values, While
Closure will accept any table as input, it is only sensible
when the table denotes a part-whole relationship such as a
work breakdown in which one column represents the Task Name
and the other represents the Subtask Name and the Subtask
also appears somewhere else in the table as another Task
with its own Subtasks, ad infinitum. In this case, Closure
can either list all of the Subtasks (and their Subtasks,
etc.) required for a Task., or for a given Subtask, list all
the Tasks (and Tasks of which those are Subtasks, etc.) of
which it could be a Subtask. In response to the prompt

"Closure:" the user types A.columnl = A.columnZ % A.column3

124

= A.columnd4 % ... % A.columnk = A.columnd where A denotes
either the number of the current window or, optionally on
the right side of the equal sign, a backslash "\". The
option "o" is default and cannot be overridden. The result
is obtained by writing the current row to the destination
window and then, iteratively: (a) ioining the current row of
the destination window with the current window based on the
column matches; (b) appending the rows in the current window
that gqualify to the table in the destination window: and (c)
joining the next row in the destination window as in (a).
This process continues until there is no next row in the
destination window. Expressions of the type A.columnk =
\.valuek are interpreted to mean that, in addition to the
column matches specified, column K must have value k. The
table in the destination window is appended with a column
with the header of —-"--1 which indicates the level in the

part—whole hierarchy at which result occurs.

10.2. Match. The Match engine produces a ijoin
between a specified table and the lowest (or highest)
level subset of a Closure for which the join is non-empty.
Using the Task/Subtask relation and a table that relates
Tasks and Task Managers, Match produces a table of all the
lowest (or highest) level Managers that must approve a

change to a specific Subtask.

10,3, Part-Whole. The Fart-Whole engine performs a
Closure and Match for every entry in a part-whole relation
at a specified level (or set of levels or all levels).

Given the Task/Subtask relation and a table relating some
subset of the Tasks and their Status (e.g., completed,
in-work, etc.) the Part-Whole engine produces a table of
every Task in the project and its status (the status of some

Tasks may not be inferable based on limited information).

10.4. Deviance. The Deviance engine performs a
difference between a specified table and either a Match or a
Fart-Whole. Given the Task/Subtask relation and the Status
table above and a table relating each Task with its sched-
uled Status, the Deviance engine produces the list of Tasks

that are at variance with the schedule.

10.5. Temporal. The Temporal engine takes a speci-
fied table (or subset of it) and produces a table that
represents a "wait-for" graph. While it can be applied
to any table, it is only sensible if the table denoctes
a precedence relationship such as a table relating a Task
and its Status to another Task and its Status in which the
first [Task, S5tatus] is only possible when the second [Task,
Statusl is true (Status can be any combination of columns

including numerical data). Given such a table, the Temporal

engine will produce a table listing each Task, the Tasks 1t

is waiting for, the Tasks those are waiting for, etc.

10, 6. Resource. The Resource engine takes & speci-
fied table (or subset of it) and produces a table that
represents a queue. While it <-an be applied to any table,
it is only sensible if the table denotes a consumption
relationship such as a table relating a Task and its
Status to a quantity of a resource in which the [Task,
Status] is only possible when the gquantity of the resource
is available (Status can be any combination of columns
including numerical data). Given such a table, the Resource
engine will produce a table listing each Resource, the Tasks
waiting for that resource, the Tasks waiting for those Tasks

because they need that resource too, etc.

10.7. Begin. FEegin prompts the user to select an
engine, specify the parameters for that engine, and starts

the engine processing.

10.8. End. End stops an engine and clears its

parameters.

10.9. Checkpoint. Checkpoints suspends an engine and
causes it to write a record of all parameters it requires to

resume processing from where it left off.

127

16. 10, Restart. Restart prompts the user to select an
engine which was checkpointed, and causes the &ngine to read

its restart record and resume processing.

128

e

FIGURE 1 - TYPICAL SCREEN

| 1 |KSC\DATA\INSTAL, 255, 124 AT S ¥% TX Log:0 Cap: 1394 x%

! !
i Scan Guery JSpace Transact Window File FRelation EngineAJ

1 PBE~NUM—1—CAT — INSTALLATION NAME —CC—ADD-
0520-00017 {30111 |DURNEBURG RR AND HIWAY RIVER ERIDGE |EG |400
0320-00086 [36170 |HOHEN DAM |EG |400
0320-00086 [z0130 |HOHEN HIWAY ERIDGE |EG 400
0520-00263 |90404 |BAD LANGENGALIZA MUNITION STOR DEFOT|EG |400
| 2 PBE~NUM DESCRIFTION

0S20-00017 |MAJOR RIVER CROSSING CONSISTS OF TWIN RR AND HIWAY i
ERIDGES WITH HIWAY BRIDGE OVER RR ERIDGE. HIWAY |
ERIDGE IS FOURLANE. RR ERIDGE IS TWD TRACK. THREE|
SFAN CONCRETE ABUTTED CONSTRUCTION WITH LARGE CON-

CRETE PILINGS IN RIVER. FOUR (4) ZSU-57-2 REVETTED|
EMPLACEMENTS AT WEST END OF EBRIDGE AND SIX (&) ZSuU-|
S7-2 REVETTMENTS AT EAST END. |
0520-00086 |HYDROELECTRIC DAM, STEEL REINFORCED CONCRETE CON- |
STRUCTION WITH TWO TUREBINE SLUICEWAYS IN CENTER OF |
DAM. STEEL-GATED SFILLWAY AT EAST END. FOUR LANE |
HIWAY ON CREST OF DAM. EIGHT (8) ZSU-27-4 HARDENED|
REVETMENTS AT EAST END AND TWELVE (12) ZSU-S57-2 ;
HARDENED REVETMENTS AT WEST END. [
0S20-00086 |FOUR LANE CONCRETE ROAD ON CREST OF HOHEN DAM WITH |
WIDE TURN-OUTS AT EITHER END.AREA IS HEAVILY DEF- |

FIGURE 2 - PULLDOWN MENUS

lllTEMP1,127,1 IX:J51 A I S X%xx TX Log:0 Cap: 1294 xx%

|
Scan Query JSpace Transact Window File Relation Engine

Incl| Find Create |[Begin Selec| Ope Crea| Closure
eXcl] Repla| Remove |Commit Open Cloe] alLig] Match
Begi | Keywo| Open Abort Close| Rea Sort| Fart-Whole
End Selec| Close Enter cleaR| Wrie| Add Deviance
clLea|(Proje| Sync Leave Link Top Drop| Precedence
Read}| Join Share L— i Boto| cHan| Consumption
Next| Union eXclusive Syn sWit| Begin
Prio| Difference | Scan t—r——| Unig|{ End
Dele] Closure , A checkpoint
Movel Next resStart
Copy]| Clear l
Writ

]

129

i1. Miscellaneous Commands.

All of the commands that can be executed via the pulldown
menus may also be executed by a one or two key control
sequence. There are many additional commands that can only
be executed by a control key sequence. The following is the

complete command set currently implemented.

11.1. One Key Commands. These are the commands
accessed by holding the CTRL key down while typing a single
character or pressing one of the specially designated keys

(e.g., TAER) on the keyboard.

“K or Shift-Tab: Tab to the previous column of a table or a
previous position in a document. If the
system is in Auto-Tab mode (an "A"
appears on the Status Line), the cursor
will position under the first non-blank

character in the previous row.

“C or FgDn: Fage Down; i.e., move down the file one

window length.

“D or Rt Arrow: Cursor Right; i.e., move the cursor right

one character.

1320

~E or Up Arrow:

“G or Del:

“~“H or BS:

-1 or Tab:

~J or Home/End:

i

Cursor Up; i1.e., move the cursor up the

file one row.

Delete Right Character; i.e., delete the
character under the cursor and shift all
the remaining characters after the

cursor left one position.

Delete Left Character; i.e., delete the
character to the left of the cursor and
shift all the remaining characters after

the cursor left one position.

Tab to the next column of a table or the
next position in a document. If the
system is in Auto—-Tab mode (an "A" appears
on the Status Line), the cursor will
position under the first non-blank

character in the previous row.

Beginning/End of Row.

Frefix to the set of two key commands that
begin with “k. It is not necessary to
hold the CTRL key down for the second

character.

1=1

“M or CR:

Fepeat Last Query; i.e., execute the

currently defined query in the current
window again. See the endnote on query
processing for a more complete description

of how the L command operates.

New Row; i.e., insert a new blank row
between the row the cursor is on and the
following row. Characters to the right of
the cursor, if any, will be deleted from
the current row and moved to the new row

automatically.

Insert Row; i.e., similar to CR except
that no characters will be deleted from
the current row and the new row will be

empty.

FPrefix to the set of two key commands that
begin with 0. It is not necessary to
hold the CTRL key down for the second

character.

Insert Control Character: i.e.. 1n order

to place a control character in the data

el
-t

R or

“S or

Fglp:

Left Arrow:

(e.g., a printer command!, type Ctrl-F

and the next character will be interpreted
as a control character. This is not
necessary 40(macros. The macro command
processor interprets any upper case letter
as a control character and anything else

as itsel+f.

Fretix to the set of two key commands that
begin with 0. It is not necessary to
hold the CTRL key down for the second

character.

Window Up; i.e., move backward in the file

one window length.

Cursor Left; i.e., move the cursor to the

left one character position.

Abort Any Command in Frogress. While
typing on the Command Line, the system
will act as if the command had never been
started. I+ the command (e.qg.. a search)
is already in progress, the system will
stop processing at the first occasion in

which everything is properly synchronized.

--r
133

vV or Ins:

W

“X or Down Arrow:

Toggle Inset/Typeover Mode; 1.e.. in
Tyvpeover Mode the character tvped will
replace the character under the cursor;
in Insert mode (an "I appears on the
Status Line) the character typed will be
inserted under the cursor and all charac-—
ters to the right of the cursor will be

shifted right one character position.

Scroll Window Up: i.e., move the window

backward one row in the file.

Cursor Down; i.e., move the cursor to the

next row in the file.

Delete Row; i.e., remove the row the

cursor is on from the file.

Scroll Window Down; i.e., move the window

forward one row in the file.

11.2. “K Prefix Commands. These are the commands

accessed after typing Ctrl-k. It is not necessary to hold

the CTRL key down when typing the second letter of the

124

command. It will always be interpreted as & control

character.

S cH Begin Scan (previcusly described).
“kCe Copy Scan (previously described).
“EE: Exclude Row from Scan (previously de-

scribed).

G 2 FRead Scan (previously described).
“hHe Clear Scan (previously described:!.
TR T Include Fow in Zcan (previously de-—

scribed).

R S e End Scan {previcusly decscribed:.

i A Frior FRow in Scan (previously described).
TN g Mext FRow in Scan {(previously described).
RO Open File in Window (previously de-

sCribed).

~EF

R T

~kUz

N DRV

“KWs

“KX:

“kYe

K2z

11,

Write Scan to Window (previously de-

scribed).

Fead ASCII Text File (previously de-—

scribed).

Define Tab Width; i1.e., set the number of

character positions to tab in a document

when not in Auto-Tab mode.

Abort Command (same as ~U).

Move Scan (previously described).

Write ASCII Text File (previously de-

scribed).

Buit and Exit System (previously de-

scribed).

Delete Scan (previocusly described).

Close File (previously described).

~0 Prefix Commands. These are the commands

accessed after typing Ctrl-0. It is not necessary to hold

136

command.

character.

~0A:

~0OR:

~0C:

“0E:

~0Gs:

~0I:

i 8 O

~0L 3

_

the CTRL key down when typing the second letter of the

It will always be interpreted as a control

Abort Transaction (previously described).

Begin Transaction (previously described).

Commit Transaction (previously described).
Leave Transaction (previocusly described).

Enter Transaction (previously described).

Select Window (previously described).

Tab to Next Column (previously described’.
Link Window (previously described).

Change Case; i.e., if the character under

the cursor is lower case it will be

changed to upper case and conversely.

Center Text; i.e., center the text under

the cursor in the column.

137

“0ONs

~00:

~0S:

~0U:

“OWs

~aY:

“01..."09:

Include Transaction in Scan (previously

described).

Open Window (previously described).

Share Transaction (previously described).

Abort Command (same as ™U).

Select Window Up; i.e., make the window

above the current window the new current

window.

Exclusive Transaction (previously de-

scribed).

Close Window (previously described).

Select Window Down; i.e., make the window

below the current window the new current

window.

Select Window 1...9 (previously de-

scribed).

138

_

11.4. “R} Prefix Commands. These are the commands

accessed after typing Ctrl-Q. It is not necessary to hold

the CTRL key down when typing the second letter of the
command. It will always be interpreted as a control

character.

“G@A: Find and Replace (previously described).

~@Cs FPosition at Bottom of File (previously

described).

@D or End: Fosition at End of Row (previously

described).

“QE 2 Clear Window (previously described).
“@F s Find String kpreviously described).
eich Add Column (previously described).

“~CGH: Change Column (previously described).
“~@Is: Toggle Auto-Tab Mode; i.e.., if Auto-Tab

Mode is on (an "A" is on the Status Line)
then turn it off. If it’s off, then turn

it on.

1729

“QJ 2

@k :

~QL:

“@Q0:

“~QF s

~OR:

~@Rz

P IcH

“QTs

~QYs

Align Column (previously described).

Drop Column (previously described),

Keyword Search (previously described).

Select (previously described).

Join (previously described).

Proiect (previously described).

Clear Guery (previously described).

FPosition at Top of File (previously de-

scribed).

Fosition at Beginning of Row (previceusly

described).

Switch Columns (previously described).

Abort Command (same as “U).

Sort Relation (previously described).

140

Unique (previously described).

Delete to End aof Row: i.e., delete all

data to the right of the cursor.

Closure (previously described).

141

12, Macro Commands.

There is a very primitive macro processor which is activated
by F9. It does not allow any parameter substitution but
merely processes the contentes of the file as a series of
keystrokes. To create a macro, simply type the sequence of
keystrokes as an ASCII text file using capital letters to
represent control characters. This can be done from within
the system by using the Write File command to create an

ASCII file.

142

13, Installation.

1Z.1. The system requires a FC or 100% compatible
with MSDOS Z.x or higher. Maost of the popular video boards
(Mono, CGA, Hercules, Faradise, EGA) are supported but the
system does direct video output so it expects screen memory

to be at $B8OOQ for color or $BOOO for monochrome.

13. 2. The system will operate with as little as 256k
but some functions will fail due to a lack of dynamic
memory. It is fully functional at 284K but will make use

all available memory up to 640K for buffer caching.

12.3. The system doesn®t care much about directory
structure and it supports path names including ..\ notation.
However, the files TT.EXE and EDITERR.MSG must be in the
same directory and that directoury must be included in
the MSDOS FPATH specification. The current working directory
is the default directory for all files unless a path name is
specified. User file names may not have extensions as the
system assigns its own extensions (.DEF, .DES, .TXT, and

<IX#) .

14%=

14, References.

{1lJ. Ossorio, F.G., Schneider, L.S., Final Technical
Report, Contract F-304602-85-C-01%0, Rome Air Development
Center, Griffiss AFR, NY, 1987.

[2]1. Cueries execute oft a stack which is particularly
important to know when executing Joins. A lJoin is specified
by an eupression such as 1.TASK = 2.TASK. This defines a
join on window #2 such that the top row in window #2

will have its TASKE equal to whatever the TASK is on the
current row (the row the cursor is on) in Window #1.
However, the synchronization is not continual but only
occurs when a L is executed in Window #1. For example, if a
Select is defined in Window #1, then each time a "L is
executed, the next row gquclified by the Select Expression is
found, and the Join from Window #2 to Window #1 is re—-exe—
cuted. But it is not necessary that any query be defined in
Window #i. A "L will always cause the stack to execute.
lI.e., as long as the ijoin is defined, you can simply
position the cursor in Window #1 and issue a L command

and Window #2 will be repositioned. Furthermore, the stack
can be of any practical depth such as joining #2 to #1, #3
to #2 and #4 to #3 and #5 to #3. This creates a tree of
ijoins with #1 as the root. Henceforth, any- time a “L is
issued in Window #1, 2 will be repositioned. Then, because
#2 is Jjoined to #2, it will be repositioned, etc., until all
the Jjoins in the stack have been executed (except circular
joins, which will only execute once).

(Z1. As of this writing, the UNION command does not work
properly and is still undergoing tests. However, a Union
can be accomplished by creating a Scan of all the rows in
one table and then reading that scan into the other table.
See the paragraph on Scans below.

f43. As of this writing the Difference command is not
working properly and is still undergoing tests. However, it
can be accomplished by performing a Join using the '"s"
(scan) option, and then deleting the scan and writing what
is left to another window. I.e., only the rows that did not
join will remain which is the desired result (this must be
done under transaction management or the original table will
be corrupted.)

144

{S]1. The knowledge structure that comprises JSpaces is

that of a Factor Space. In contrast to lexically-based
technologies, factor spaces provide a psychometrically based
indexing method that bypasses the usual limitations of
word—-shape or mutually exclusive indexing categories. This
is achieved by the construction of a multi-dimensional space
in which each dimension represents a significant variable
that discriminates among, for example, resources in the
proiect (skills, computer systems, dollars, individual
persons, etc.): and each is represented by a vector of
coordinates that laocate it, geametrically, in the factor
space. This allows, for example, the resources necessary
for a process to be retrieved according to the principle
that resources located closer to each other in the factor
space are more similar to each other in terms of the

factors comprising the space.

In the problem domain of scheduling, factor spaces might be
constructed to represent, at least: (a) attributional
similarity among resources as above; (b) transformational
similarity among paradigms; (c) part-whole similarity

among processes and achievements: and (d) achievement
similarity between processes and process similarity between
achievements. In all cases, tne general procedure that a
user would employ to construct a factor space is as fol-
lows: (1) Select a set of variables that jointly discrim-
inate within the problem domain the representation units or
elements thereof: (2) Select a sample of the representation
units among which discriminations will have to be made
(e.g., vocabulary terms, paradigm case descriptions, consti-
tuent and/or process definitions); (3I) Create a table
(matrix) of the sample with respect to the variables and
record Judgments about the relevance of each sample item to
each variable (this can be gualitative such as "highly
relevant" or quantitative on a numeric scale); (4) Invoke a
statistical process provided within the system to analyze
the correlations among the variables (this eliminates
commonalties among the variables and creates a set of
orthogonal axes that form a space with the required geomet-
ric properties); (5) Have the system scan all of the
representation units (or elements thereof) in the domain of
interest and assign to each a vector of coordinates repre-—
senting its location in the factor space; (&) Henceforth,
when desired, request the system to assign coordinates

to a hypothetical representation unit or element thereof
(i.e., a request for one that is needed but may or may not
be present) and to retrieve whatever units do exist in the
order of their distance from the coordinates of the request.

The normal operational cycle of a factor space is then
roughly as follows: new representation units or elements
thereof are created by the user; these are scanned by the

145

system and assigned a coordinate vector in the factor space
based upon how it relates to others already located i1in the
space; the user or the part-whole inference engine interro-
gates the factor space for a list of representation units or
elements that are relevant to a needed representation unit
or element; and the factor space is monitored by the system
for unrelated or indistinguishable representation units so
that the analyst can periodically add or rem>ve variables.

Factor space indexing provides several unigue f2atures.
Indexing would be accomplished automatically, relieving the
user of the tedium of systematically coding the represen-
tation units and elements. Also, representation units and
elements would be retrieved by the system on the basis of
the user®s ijudgments about content, freeing him from
adhering solely to searches based on the lexically struc-
tured query and inference engine capabilities already
proposed. Finally, representation units and elements would
be, at the user’s option, retrieved in order of relevance
(as opposed to simply '"gualified" or "unqualified") provid-
ing a formal basis for estimating the degree of relevance
between the planned schedule and what is actually occurring,
hence, the degree of confidence that a proiect is or isn’t
proceeding according to plan (and the reasons for that
conclusion).

{6]1. Formally such "queries'" are considered to be beyond
the power of first—-order logic in that the gquantification of
the result after i iterations ics dependent on the result of
iteration (i - 1). In this sense, they are motivated
(fueled) by the results produced along the way (and,
perhaps, this is one justification for referring to them as
"engines'").

£71. The technical requirements of these are described in
the other sections of this report. They are redescribed
here from a user®s perspective. In the technical discus-
sions, however, they are referred to as extensions to a
single inference engine. Experience with the Fhase I proto-
type. however, suggests that from a user’s standpoint, a
modular implementation of several engines is advantageous in
two regards: (a) it retains the closed nature of the system
in that every operation produces an obiect (table, scan,
etc.) that can be manipulated by all the other functions of
the system; and (b) a user has the flexibility to combine
the enqgines in a number of ways, some of which may not be
obvious even to the system decsigners.

146

(81. Given a relation R(....,A,...,B,...} having two
attributes over a common domain, it 1s then possible to have
joins of indefinite lenpgth: K [A=E] R [A=E3 R [A=K]... and
in the general case the topological structure defined on
the tublee of R is a digraph. We can invent & notation
within relational algebra such that Ro[A=E] means R [A=E] R
... [A=F] R where R occurs n times. FEut thare is no way to
allow this to occur an indefinite number of Ltimes within
relational algebra. We define the Closure operator
E*[t,A,B] as follows where k is a key of R, and A and B are
attributes or lists of attributes having the same domain:

R*[E,A,B] is the set of all tuples <k, ,ka.n> where
there is a Jjoin sequence on A=E of length exactly n.

The Closure operator combines with other operators of
relational algebra in such a way that it may occcur on any
semantic loop definable within the schema (e.g.. upon =z
projection of a compound expression formed of Joins!, It

has great import for part-whole r=lations such as determin-

ing the lowest common superior of a set of slements of a
hierarchy, or the highest discriminants. For example, in
the following hierarchy, the commonality between Alagerix and
Uganda is Africa, and the highest discriminants are (Maorth

fAtrica, East Africa)l.

1. Africa

1.1. North Africa
1.1.0.1., Meditervranean
1.1.0.1.1. Algeria
1.1.0.,1.2. Libya

1.1.0.2. Atlantic
1.1.0.73, Interior
West Africa

South Africa

East Africa
1.4.0,1, Fenya
1.4.0,2. Uganda
1.4.0.7Z, Tanzania

e
L)

Where the structure is a lattice rather than Jjust a hier-
archy, closure can determine the common inferior and its
discriminants.

147

A knowledge Dictionary System for Scheduling Support

F.6. Ossorio and L.S. Schneider

Appendix B

Submitted by

Linguistic Research Institute, Inc.
S600 Arapahoe Avenue

Boulder, Colorado 80303

Submitted to
Rome Air Development Center
Griffiss AFB, New York

148

[

TABLE OF CONTENTS

O0S/LAN Compatibility.

Operating System Software. . e e

2.1. Frocess. . « +« & « s &« s« o =«
2.2, Memory. e e & s e e s e e s
2.3, Context. e e« e & s = s e o

2.4. Files. . . .+ & &+ &« 2 & & « =

2.5. e

LLAN System Software. .

Z.1. Server. . e s s e« s e e e s
3.2, Service. ¢« « ¢« ¢« ¢ & o & s =«
Z.3. Address. . « « 4 « « + » +
3.4, Transaction. . . « « +« &« «

References. . . .« ¢« o o « 2 o o o

149

187

189

196

199

204

1y 0s/LAN Compatibility.

Operating System (0S) software and Local Area Net (LAN)
software must be compatible for an implementation to wortk
correctly. A parametric analysis of each of these and their
interface topology is developed and explained; and a

possible compatibility matrix is suggested.

2. Operating System Software.

The Operating System (0S5) software traditionally provides
the interface between the system hardware and the most
immediate user of that hardware: typically a programmer.

The possibility of "end users" in the traditional sense
being users of the 0S is not considered in this analysis [13]
and the term "user" consistently denotes a program or
programmer throughout this discussion. The issue of whether
the LAN software is an 0S user is considered in another
sectioﬁ. The principle conceptual entities dealt with by an
08 are processes, memory, context, files and inter-process
communication (IFC). Its purpose is to issue instructions
to the Central PFrocessing Unit (CFU) to implement and manage

these entities.

2.1. Process. To the 0SS, a process consists of

a sequence of instructions (code) and data over which the
instructions operate. Such a collection is typically stored
as a file and does not acquire the status of a process until
the 0S has rec.1ved a request from another process to
execute that file. The problem of an infinite regression of
processes 1s solved by what is known as a "bootstrap"
program; i.e., a program whose name is encoded within the 0S
as the firest process to commence after the 05 is loaded and

initialized [2]. The issues related to processes are

initiation, execution, and location of both the code and

data segments.

2.1.1. Initiate. The ways in which processes can
be initiated by the 0S5 are legitimate parameters for
describing its behavior. An 0S must, of course, have at
least some way to initiate a process;:; and most have sev-

eral. The principal variants are as follows.

2.1.1.1. Spawned. A process can be "spawned"
by another process; i1.e., can be converted from the file in
which it resides into a process waiting for execution.

Every 0S must have at least this capability.

2.1.1.2. Forked. A somewhat more advanced way
of initiating a process is by a "fork." In this case, a
process that is already running recreates itself as another
process waiting for execution. This is most common tech-
nique in multi-user systems, particularly for the shell or
command line interpreter. Every time a new user logs into
the system, the shell reinstantiates itself as another
process to serve that user and continues executing until

that user logs out.

2.1.1.3. Primed. In performance intensive

systems with many users logging in and out at very high

frequencies (e.g., a system serving Automated Teller
Machines) a technique called "priming” is emploved.

In this case, due to the overhead involved in forking, a
process forks repeatedly at initialization, creating a
specified number of "primed" processes that wait for users
and do not terminate when the user 1695 out, but merely
reinitialize and wait for another user. Frimed processes do
not terminate until their termination is requested expli-

citly by another process.

2.1.2. Execute. The way in which processes are
executed after initiation is also characterizes the behavior
of the 0S. It is possible, but unusual, for an 0S5 to have

more than one way of controlling process execution.

2.1.2.1. Dedicated. "Dedicated" execution is
the environment in which whatever process is executing has
the attention of the 0S8 for as long as it wishes, exclusive
of any other processes. In this environment, the only
disruption of a process is a hardware interrupt or trap that
causes the program counter to be reset to a value storasd in
& predefined memory location associated with that hardware
interrupt line. Such vectors are almost always to code in
the 05 (e.g., to service a disk drive during data transfer)
although nothing prevents a process from changing these

vectors. Dedicated execution is predominant among extremely

simple, single-user systems, few of which remain in exist-

ence today.

2.1.2.2. ©Sliced. *"Sliced" or time—-slicing was
the first and simplest approach to multi-user serwvicing. In
this approach, the 0S5 associates a rundown timer with each
process in execution and sets that timer to an equal or
apportioned "slice" of time (e.g., 100ms). Then, every time
the 0S gets control via a hardware interrupt, it updates the
timer based on a real-time clock and, if it finds that the
value of the timer is O or negative, instead of returning
control to the interrupted process, it returns control to
the next process and resets the timer for the interrupted
process. Sliced execution is only found today in either
very dated systems (due to its simplicity), or in very

modern super—-computers (due to its speed).

2.1.2.3. Priority Interrupt . By far the
most common form of execution control, the '"priority
interrupt" approach utilizes gpecial hardware interrupts
found in almost all modern CPUs to accomplish time slic-
ing. Each process is assigned to a frequency interrupt
register according to its priority over other processes.
The hardware continually generates interrupts for each
register and thus both enables the 0S5 to get control at

specified intervals and is able to stack interrupts accord-

ing to priority when an interrupt is generated during the
pracessing af another interrupt. This allows the 0S to take
maximum advantage of "“idle™ time (time in which a process is
waiting, e.g., for a disk transfer) in allocating it to

processes that are ready to resume execution.

2.1.2.4, Stacked. "Stacked" execution is
found today only in extremely high—-end mainframes, although
the technology is by no means new. The stacked approach
achieves advantage over the interrupt approach in much the
same Qay that prim=2d processes do over forked processes.
The 0S determines chead of time which processes are to
execute and how frequently (including itself) and pushes all
the information onto a hardware stack. Then, every time an
interrupt is generated, the hardware itself pops the
information necessary to activate the process off the stack
and relinquishes control to that process. In this approach,
the 0S is not a privileged process, but has the same status
as all other processes. Its ability to control the system
derives only from the fact that it is the first process to
erecute and thus can initialize the stack to prioriticze its

own execution.

2.1.3. Code Segment. The way in which the 0S

manages the code segment of a process is a characteristic of

importance, particularly with respect to performance. Most

systems support some admixture of the followina.

2.1.3.1, Duplicate. Duplicating the code
segment for every instantiation of the process is the
oldest, simplest, but still the fastest approach. The
code does not have to be re—-entrant (31 and there is
little to do when switching from one process to another (see
Context below). It is expensive in terms of memory , which
was a prime motivator for developing the other approaches,
but is resurgent today as memory costs have fallen through

the floor.

2.1.3.2. 8ingle re-entrant. In this approach,
there is only one copy of the code segment in Memary.,
regardless of how many processes are instantiated from it.
Ana, not surprisingly, this technigue predominates in

contemporary systems with limited memory. The price paid

is, of course, that an.enormous amount of information .must
be saved when the process is interrupted, and the same
information retrieved when the process restarts, all of
which takes time and is referred to as "context switching"

(see below).

2.1.3.3. Duplicate re-entrant. This environ-

ment is found, again, mostly in high-end mainframes. It is

156

an attempt to gain the advantages of both duplicate and
re—entrant execution in a way that makes optimum use of the
system. 'The 0S monitors how frequently each code segment is
being referenced by different procecsses, and optionally
generates duplicate code segments as needed or collapses
duplicate code segments into a single segment as demand de-
creases. Generating new duplicates is very easy and very
fast, which is ideal in that the need to do sa occurs when
the workload is increasing very rapidly. Collapsing dupli-
cates is difficult and slow, but that is of little conse-
quence since the need to do so is prompted by the fact that

the system workload has become very relaxed.

2.1.4. Data Segment. Managing the data segment of
a process is also characteristic of an 0S but is also highly
correlated with the way in which the code segment is

managed.

2.1.4.1. Process—-bound. In this approach., all
data is bound to the process, and only indirectly referenced
by the code segment. This approach is required if code
segments are allowed to be completely re-entrant. The
principle advantage® is in the insulation among users that is
obtained. The code segment knows nothing about multiple
users and each process for which it executes has the

illusion of being the only process that existe. The

elegance is paid for in terms of the high degree of indirec-
tion (with its attendant performance cost) necessary to

access data.

2.1.4.2. Code—-bound. In this approach, some
or all of the data may be allowed to be directly bound to
the code segment at the user®s option (or as may be determ-
ined by an optimizing compiler). This provides for having
only one copy of constant and g;obal data, while maintaining
seperate copies of only those variables that are process-
—-dependent. A primary exemplar of a process requiring
code—-bound data is a database management system. It is
absurd to think of duplicating (and, hence, maintaining
consistency among) all the data dictionary and data defini-
tion variables when only a handful of variables (e.g., the
query) are specific to the process. In fact, in systems
that do not allow code-bound data (e.g.. Unix), implementers
of database systems have without exception utilized files or

raw 1/0 (see below) to bypass the 0S.

2.2. Memor~y. Memory is the major asset of the hardware
that must be managed by the 0S. Memory, as used here,
denotes only that store directly addressable by the CFU in
the context of executing a CFU instruction. It does not
include any extended stores such as RAM under control of a

Memory Management Unit (MMU) unless the MMU is invisible to

158

the 0S (which i1s not often). Any data residing in other
than memory can be thought of as being on a disk or equival-
ent storage mechanism that requires extensive effort (and

time) before it is accessible to the CFU.

2.2.1. Real. The real memory is the RAM that 1s
electronically connected to the CFU memory bus and can be
directly accessed by specifying an address to the CFU. As
far as the 0S8 is conCEfned, it is the fastest and only such
memory [4]1. The principal characteristic of anm 05 regarding
the management of real memory is how the 0S presents that
memory to the user. To some extent, the presentation
retflects the actual hardware arganization, but this 13
purely a convenience to the 0S5 (and a burden to the user)
and is never a logical requirement. By 05 18 always,
in principle, capable of mapping the hardware memory organi-
zation to whatever presentation it desires; its Just easier

not to.

2.2.1.1. Linear. The simplest presentation of

memory to the user is that of a linear sequence of bvtes,

starting at O and ending at the highest number of bytes in
the system. When the bhardware actually uses such a struc-—
ture (e.g., the Motorola 68000 series CFU) the 0S5 will

almost always present it that way to the user, even if the

0S was ported from another CFU that did not use a linear

audress space. When the underlying structure is other than
linear and the 0S presents it as linear, the 03 will almost
always impose a limit on the address space avallable to the
user that, in some way, reflects the non—-linear structure.

That’ s why we always have machines with megabytes of RAM on

which the largest program cannot exceed 64k.

2.2.1.2. Segmented. A segmented presentation
is always the.most difficult for the user and, if the
hardware memory is segmented, the easiest for the 0S.
Segmented memory is a linear memory that does not allow
linear addressing, but instead requires a structured address
such as <bank, page, paragraph* in which each of the
components is modulo. The user has no choice as to where
his memory begins and ends, but it is the users respaonsi-
bility to check for page boundaries. E.g.., on an 80X86 CFU,
the address of the byte that follaows OQOFF:OQFFF:F is

O1C0G020000: 00,

2.2.1.3. Paged. A paged presentation is a
segmented presentation except that the user always sees
pages as 1f they belonged to him. I.e., he will always own
(as he sees it) byte O of every page he has, even if that
begins in the middle of a hardware page. He thus requests

memory in terms of pages and allocates his data in accord-

160

—

ance with the page structure he requested and the 0S5 takes

care of mapping those addresses to the hardware addrescses.

2.2.1.4. Protected. Memory protection is &
hardware feature that applies to any memory presentation and

augments that presentation to serve not only as the mode of

addressing, but also as a boundary outside of which any
access attempt will trigger a specially designated hardware
interrupt if the system is operating in what is called "user
mode." What happens as a result of the interrupt is up to
the 0S, but almost always is a process termination. No
process running in user mode can change the mode register
because it is ocutside the users memary. But when the system
powers up, it is in "system mode" by default so thRe 0S
brocess begins in system mode and has access to all memory
including the mode register. Thus the last instruction the
0S executes before activating another process i1s to put the
system in user-—-mode and all hardware interrupts automatic-

ally return in system—mode.

2.2.2. Virtual. Virtual memory refers to memory
that appears to the user as if it were real memory; i.e., he
can treat it in the same way as real memory and, in fact,
does not even need to distinguish between the two unless he
is concerned about performance. The way in which the 0S

implements virtual memory is one of the most critical

161

characteristics of its performance and its integrity. By
definition, virtual memory is much larger than real memory,
and the principle problem that confronts the 0SS is how to
map the virtual space to the real space and how and when to

act on that mapping.

2.2.2.1. Swap. The oldest and simplest
approach to virtual memory is called "swapping.” In this
approach, the 0S generates a load map for a process when it
is instantiated; i.e., the set of real memory locations that
the process will use whenever it is active. The map ics
stable and does not change from one activation to another,.
Henceforth, when a process is activated whose load map
intersects the load map of another (or séveral) inactive
process, all of the memory associated with the inactive
process is written to disk and the location of that informa-
tion on the disk is noted in the load map for that process.
Then, the load map for the about to be activated process is
interrogated and its disk-based memory image is read into
memory according to the load map. To minimize complexity,
most systems that employ swapping also set a fixed size
limitation on processes so that only one process will have
to be swapped for each process that is swapped in. This is

I'mown as Multiple Fixed Tasks (MFT) management.

162

2.2.2.2. Demand Faging. Unlike swapping,
demand paging does not swap on a process basis, but on a
memory page basis only when necessary. Nothing at all 1is
done when a process is activated. It is only when an active
process actually makes a request to access a part of 1ts
address space that is not in real memory (called a page
fault) that an action is taken. The action is to swap out
the hardware memary page regardless of its mapping to
processes, and replace it with the image of that page as
the process last saw it. Moreover, as there 1s no reference
to processes, any hardware page can be selected for swapping
and the memory map for the process will be altered accord-
ingly (i.e., multiple references to the same virtual
address may reference different‘real addresses). Demand
paging s typically done according to some strategy f{e.g.,
least recently used or least frequently used) that dynamic-
ally avoids "thrashing;" e.9., two pages that reterence each

other competing for the same real page.

2.2.2.3. Explicit Paging. Explicit Paging is
usually provided either as 0 extension to demamd paging, or
when no automatic swapp ng of any kind is provided. An
exemplar of the latter case is the use of overlays:; i.e.,
segments of code structured by the programmer in a non—-con-
flicting way and explicitly declared by the programmer to

reside i1in the same real men -y segment. In the former case,

167

explicit paging is offered to the user for one of two
purposes: (a) to lock a process into memory so that it will
not get swapped out, even if it is not very active {(e.g., a
primed process that is waiting for a user); or (b)) to force
all pages of a process to be swapped out if any one of the
pages are swapped out (e.g., if the user knows a priori that
he has two very large processes, neither of which can do

anything unless all its pagec are resident).

2.3. Context. Given that an 05 provides for re—-entrant
caode and process—bound data., the combination of the singular
code segment and the data segment associated with one of
many processes is called a "context" and a context has to be

created, maintained and terminated.

2.3.1, Create. Context creation refers to
building what amounts to a process description., including
place holders for all the information necessary to record
the state of the process when the process is interrupted. A
process description will typically include references to:
the code segment, the data segment, the stack, the stack
pointer, all opened files and their interface blocks, and

both the real and virtual memory maps.

2. Switch. Context switching refers to a four

stage process that is probably the single mocst expensive

164

function (in terms of the percentage .f total available CFU
time consumed) performed by an 0S. First., the entire state
ot the current context 1s recorded in the process descrip-
tion and the decscription and any (or all if the system uses
swap management) of the processes memory pages so indicated
are synchronized to stable store. Next, the 0S restores 1ts
own context from its last synchronization point including
swapping in any indicated memory pages and commences its own
processing. Thirdly, its entire state is recorded and the
description and any of its memory pages so indicated are
synchronized to stable store. Finally, the next user
context is restored from its last synchronization point and
it’s execution i1s commenced [3].

2.7.3. Exit. The termination of a process is
considerably more complex tham merely erasing the evidence
of its existence. To the extent that the process has
acquired resources (see below), those resources must be
accounted for, released, and made available to other waiting
processes, not the least of which is the 0S5 itself. It is
upon process termination that the 0S pefiorms most of its

scheduling and degueuwing functions.

2.4, Files. In modern 0S terminology, a file refers to
any data stream stored on, sent to or received fraom anything

other than real memory; i1.e., files include all the data

165

within the system and in other systems to which the system
has access. They are the malior asset of the scftware that

the 0S5 must manage.

2.4.1., Data. Data files represent only those
types of files that were traditionally called files. These
are structured user data (e.qg., the files of a database),
text (e.g., program source code), and other data that is
maintained by user programs. The three primary character-
istics that distinguish among 0S with respect to files are

format, access method and versioning.

2.4.1.1. Formats. The file format refers to
the gormat in which the 0S presents the file to the user.
It is most often the case that this is also the way in which
the 0S formats the file on the hardware. However, this is
not a requirement and many 0S perform some mapping on behal+f
of the user to hide many of the complexities of internal
structure. In the latter case, it is extremely important
for the user to understand these complexities at least to
the extent that they impact performance. Most 0S offer more
than one format, allowing declaration by the user at file

creation.

2.4.1.1.1. Stream. A stream format is

one in which the bytes of the file are sequential and are

166

accessible in order beginning with byte O. The internal
representation of a stream is either very similar (except
that it deals with the complexities of segmentation) or is
"linked.," In the latter case, the bytes within a page atre
sequential but the pages are asequential and the ordering is

maintained as a sequential list of pages [6].

2.4.1.1.2, Text. A text format is a
stream in which are embedded certain control characters that
enable sequential access in ways other than on a byte by
byte basis. The most common is the <CR/LF* (carriage
return, line feed) pair. When this is present, the file is
accessible one "line" at a time where line denotes all the
bytes up to and including the next <CR/LF:. It is possible
to embed additional control sequences although this i1s most
often left to the user (e.g., a word processing system will
insert control characters for paragraphs, pages, headings,

etc.).

2.4.1.1.3. Paged. A paged format is one
in which the unit of addressability is larger than a byte,
and 1s so not merely by the presence of control characters
as in a text format, but by the imposition of structure.
The implementation of a page format requires that a page

"gire" either defined or default be declared for the file

167

when it is created. It is then accessible on a page by

page basis.

2.4.1.1.4, Structured. Structured files
are identical to paged files at the top-most level, but
allow the subdivision of pages into complex components
called "fields" which may consist of other fields. The
structure must be declared when the file is created. It is

then accessible on a page.field.field. .. .field basis.

2.4.1.2, Access Methods. The access method
refers to the means by which components of a file can be
accessed. The access method is obviously not independent of
the format inasmuch as the format determines what components
exist. It is independent of the format in terms of how

components are accessed and modified.

2.4.1.2.1. Sequential, The simplest

access method i1is sequential. l.e., component N only becomes
accessible immediately after access to component N—-1 has
cccurred, and the first access will always be to the first
component if the file is opened for read or read/write, or
after the last component if the file is opened for append.
Most of the simpler 0S access streams and text files in this
manner, maintaining a pointer to the location in the file at

which the next access will occur, and setting flags for the

168

user when certain conditions are true (e.g.. End of File,

End of Line, etc.).

2.4.1.2.2. Direct. Direct access allows
any component of a file to be accessed directly by the
invocation of a "seek" function. The parameters to the seek
function include the component®s position, relative to the
first component. The effect of the seek function iz to set
the file pointer to the end of the preceding component so
that the next sequential fetch will obtain the desired
component. Internally, the seek function may be implemented
as a loop of sequential accesses or the 0S may implement a
structure on top of the file (e.g.. a page map) to support
direct reads at the expense of more costly adds and deletes
(because the page map requires updating whenever a component

is added or deleted).

2.4.1.2.3. Indexed. Indexed access

augments direct access to support companent addressing by
value. I.e., the user does not have to specify to relative
position of the component, but merely its contents (or a
range of contents). Most 0S implement indexed access based
on the definition of a "key" component; i.e., within the
page, a field (if the format is structured) or a range of
byte positions and it 1is this component and only this

caomponent that may be used far addressing. As with direct

169

access, a structure is typically implemented on top of the
file (e.g., a B-tree) to increase the performance of

retrieval=s and the expense of updates.

2.4.1.2.4. Indexed Sequential. This
access method is optional depending on how thz 05 implements
indexed access. It is frequently the case that a file
accessed directly or by index will also need to be accessed
by the user sequentially at times (e.g., an accounting
application will need sequential access for ena—of—month
processing) . If the 0S implements indexing as a B-tree or a
hash table, then no straight forward means of sequential
access is possible other than the unacceptably high-cost
method of attempting to access every possible key value in
ASCII order (99% of the attempts will fail, and the cost of
a failure is usually higher than the cost of a successful
search). In such cases. the 0S may provide an indexed
sequential access method that supports both direct and
sequential access at an acceptable cost. The form of
implementation varies but by far the most frequent in
contemporary systems is the B+ Tree (a B—tree in which the
leaf nodes are linked from left to right). The cost of
sequential access is still considerably higher with a E+
Tree than with a sequential file but are, at least, accept-

able for reasonaply small files (see Updates below).

170

2.4.1.2.5. Virtual Indexed Sequential.
VSAM, as it is commenly called, is found only on high—-end
mainframes. It is an implementation of indexed sequential
access in which the file is also maintained as a "virtually"”
sequential file; i.e., it is physically sequential inasmuch
as is possible, and is maintained that way by performing
page splits on the file itself, similarly to the way a
EBE-tree performs page splits in the index (see Updates

below).

2.4,1.3. Versions. Versioning refers to the
way in which the 0S is able to access prior states of the
file (not to be confused with backup - see Imaging below).
In a simple 0S this is typically left as a user problem. In
high-end mainframes, it is the rule rather than the excep-
tion (e.g., an accounting system needs to create its monthly
billing as of the end of the month but may not do so until

the tenth of the following month).

2.4.1.3.1. Snapshots. The "do nothing"
approach is to copy the entire file as it exists on the date
for which processing is desired. This is workable for small
files but virtually prohibitive for very large files (e.g.,

the transactions of a mador bank).

171

2.4.1.3.2, Audit Trails. In medium to
large systems, the 0S can restore a file to a prior state by
undoing the actions recorded in the audit trail (which it
maintains for other purposes ~ see Imaging below) that
occurred since the desired date. This allows access to
current data to proceed as normal, while the program
accessing a prior version will incur an added processing

expense.

2.4.1.3.3. Differential Files. When
accessing historical data predominates access to current
data, the 0S can perform updates through a "differential”
file. In this approach, usually found only an high-end
mainframes, the file remains static for periods of time that
correspond to work cycles (days, months, etc.) and during
those cycles., updates are recorded in a separate "differen-—
tial" file. Every access request is accompanied by a time
stamp indicating the currency of the data requested. The 0S
obtains the baseline information from the file and then
"picks" the differential file for upd:¢ s that have occurred
between the static file time and the requested file time.
This has the opposite effect of audit trails in that the
cost to access historical data is less, while the cost of

accessing current data 1s correspondingly higher.

172

2.4.2. Device. Devices refer to the phvsical
hardware components with which the 0% must interface,
including the devices on which data files reside. The
principal characteristic of an 0S with respect to devices is
its flexibility in interfacing to different devices, either
existing, new or virtual. The means by which amn 0S inter-
faces to a device is referred to as a '"device driver" and
it is the presence of device drivers, separately from the
file system, that allows the user a high degree of uniform-
ity in performing and redirecting (7] 1/0 operations and
also allows the 0S to unify its internal structure for most
of the standard functions (e.g., open, close, read, write,

etc.) performed on files.

2.4.2.1. Installed. An older 0S (e.g., Unmix)
is typically supplied with a set gf device drivers already
installed as an integral part of the 4S. It assumes that
there is a standard complement of devices in the environment

and is able to interface with exactly those devices.

2.4.2.2. Loadable. A modern 0S5 is also
supplied with a set of device drivers, but they are not
installed in the 0S. Instead, the user defines a '"configur-
ation" file that specifies which devices actually exist in
the environment; and the 0S interrogates this file to

determine which drivers to load. This has the advantage

173

of consuming only the memory necessary for the device

drivers actually needed at any given time.

2.4.2.3. Definable. An 0S5 with definable
drivers goes one step bevond an 0S with loadable drivers by
specifying a standard protocol for defining device drivers.
This allows the user to write and use drivers not supplied
with the system, either to interface to a new device, but
more often to create a virtual device ocut of existing

hardware so that it can be treated uniformly as a file (8].

2.4.2.4., Raw. A "raw" device driver is a
driver that allows the user to access an existing device
directly, without going through the 0S file system, while
concurrently allowing the 0S5 to use that device as part of
the file system. Raw I/0 is usually implemented as a
partition of the device, particularly for storage devices
such as disk drives. In such a case, the 0S8 supports the
definition of only a subset of the device as a standard
file, and leaves the balance of the device available for
either the user or another 0S. This i1s the principle means
by which applications can be easily ported from one 0S5 to

another by running the original 0S as a user process of the

new 0S.

174

rmmmmsssss - -

2.4.3. Cache. The cache of the 0S5 refers to that
part of the file system that buffers data between memory and
the file. The way in which the cache is implemented is a

prim:ry characteristic of 0S5 integrity and performance.

2.4.3.1. Synchronous. If an 0OS provides a
synchronous cache, it means that data to be read from or
written to a file is physically read or written immediately
upon the user’®s request. This guarantees that the physical
file will always be consistent with the user’s image of 1t
and coﬁversely. This provides a very high degree of
integrity and is very easy to implement. In fact, it is
often the case that an 05 provides a synchronous cache with
no implementation at ally i.e., I/0 is performed directly to
and from user memory immediately upon request. However, a
synchronous caching system is also the most costly, as every
1/0 request suspends the requesting process until the I1/0 is
complete and may even cause other processes to be suspended
if their I/0 requests overlap in any way (e.g., the same

device, the same channel, etc).

2.4.3.2. Read Ahead. A "read ahead" cache
preserves some of the integrity of a synchronous cache in
that all writes are synchronous. However, reads are
anticipated and performed before being requested. This

occurs either explicitly by the user supplvying an "intent"

175

parameter when the file is opened, or dynamically By
monitoring the usage of the file. Read ahead is almost
always done sequentially and is accomplished by reading one
or more components of the file during a time when the user
process is inactive in hopes that the components read will
be requested by the user process when 1t is reactivated.
The sacrifice in integrity is that, unless a locking scheme
is employed (see below) if more than one process is access-—
ing the same file, the image in memory that was read
asynchronously for one process may not be consistent with
the intentions of the other process in a way that is
impossible for the 05 to detect. E.qg.. the second process
may synchronously change the file while the first is still
processing based on the memory image it received; and if it
makes a change to the file, it will supercede the changes

made by prior change.

2.4.3.3. Write Behind. When "write behind" is
added to "read ahead" caching, the result is a cache that is
completely asynchronous with the processes using it. When a
read request is received, the cache is first checked to see
if the data‘is already in memory. If 1t 1is not, the request
1s placed on a heap with all other pending I/0 requests.
When a write request is received, the only effect 1s to set
a flag in the cache image indicating that it was changed

since it was read and needs to be rewritten to the file, and

176

to place that write requecst on the heap. The physical 1/0
takes place at the leisure of the 0S as tollows: (a) the
heap is sorted by ﬁhysical address and processing commences
in that sequence; (b)) each read request first checks to see
that there is a clean (empty or unchanged) page in the cache
and if there is, the read is processed. otherwise it is
placed back on the heap; (c) each write request is processed
and i1ts cache page is tlagged as empty: and (d) the process-—
ing continues until either all the requests are serviced or
the system i1s interruptea by a higher priority process. The
net performance advantage is that, for a disk, the arm
motion is that of an elevator, smoothly moving from the
outer track to the inner and back again, depositing and
picking up data as it goes. The integrity lost is that
neither reads nor writes occur in the sequencé in whi-*% thevy

were requested.

2.4.4. Imaging. Imaging refers to the means by
whichk the file system is able to recover from a failure,
either of a user process, or of the media itself. It is an
1mportant characteristic of the 05 1in terms of both currency

of data and system availability.

2.4.4.1. User. The "do nothing" approach 1s
to allow the user access to a physically independent device

during processing on which 1t can record anything 1t

177

wishes. When a media failure occurs, it is the user’s
responsibility to run a process that can interpret what was
written and attempt to reconstruct any lost or corruptel

data.

2.4.4.2. Before. "Refore imaging" is a
feature provided by the 05 that automaticaliy writes a copy
of every page of a file that is read to a physically
independent device. When a failure occurs, the 05 replaces
every page of the file with its most current "before image"”
to effect a "roll-back" of the file to the most current
consistent state that existed prior to the failure. BEefore
imaging 1s a "pessimistic" policy that incurs a large
overhead during normal operation (every read causes a
write), but is able to qQuickly restore the file in the event

of a failure.

2.4.4.2. After. "After 1maging'" is a feature
provided by the 0S that automatically writes a copy of every
page of a file that is written to on a physically indepen-
dent device. It implicitly assumes that a backup copy of
the file 1s made at regular inter-vals. When a failure
occurs, the backup copy is used to reinstate the file, and
the latest "after image" of every page that has changed ics
applied tao the file by the 0S to effect a "roll-forward" of

the fti1le t+rom a backup state to the most current consicstent

178

state that existed prior to the failure. After imaqging is
an "optimistic” policy that incurs little overhead during

ﬁormal operation (only writes are duplicated and there are
very few writes compared with reads), but massive overhead
in the event of a failure since the entire file must be

recreated from its backup copy.

2.4.4.4. Mirror. Mirror imaging is very
reliable and very expencsive and is emplovyed only in systems
where'the ability to recover from a failure very quickly 1s
critical. A real—time air traffic control system would have
such a requirement. In mirror imaging, the 05 has access to
replicate hardware which, while not dedicated to the 0S5, is
used only for lower priority functions that can be dispensed
with in the event of failuré. In this apptroach, the O
begins by creating a mirror image of the files on the repli-
cate system. Subsequent to that, every 1/0 aoperation is
written tec a log on the replicate system which, periodicaliy
and quite frequantly, is suspended from any other activities
to process the log and bring the mirrored files up to date.
When a failure occurs, the 0S5 aborts amy processes using the
replicate hardware. processes any outstanding I1/0 opera-

tions, and resumes processing with the new hardware.

2.4.5. Update. The means by which an 0S physic-

ally updates files i1s highly correlated to the way in which

179

the cache operates, and whether and to what extent the 0S5
provides imaging. However, the charactericstic of importance

in updating is that of performance.

2.4.9.1. In Place. In a performance intensive
system, particularly when sequential processing is involved,
the 0S uses an "update in place" policy to preserve the
physical clustering of file components. However, since
updating in place may require a long update cycle (i.e.,
pages may have to be split and data reallocated). it is only
employed in systems that have either a very rcbust recovery
mechanism (sufficient to recover from a failure during the
update cycle itself) or little or no requirement for

recovery.

2.4.5.2. Replace. 1In systems that do not

require high-performance sequential processing and in which
failures are frequent and recovery support is minimal, the
0S uses a ''replace" policy to reduce the time during which
an inconsistent file is exposed to failure. In replacement,
updates never touch the existing pages of a file or its page
map except for the very highest level of the page map which
is usually & single page. When an update is processed., =
new page 1s allocated from the free list for the data. and
for every page of the page map that is affected. The 0%

then proceeds to write the updated data onto the new oagas.

180

However, until the top-most page o+ the pags Tap 15 writher,
nore of the new pages are loglcall, conmectss into the t1le,

s the last to be writtzo and 1+ 1

-

and the top-mozt page

i

it
-
&
pag
-
il
I
=
il
1
-
<
it
Hl

aoniy when 1t iz written that the fres 1ist
in memory) 1s only synchronized. Thuas, the only time a
failure can leave the +ile in & corrupted state is the briet
interval when the top page of the page map and the free list
are synchronized. Any failure before that interwval leaves
the file as it was before the update cycle began. The cost
tor this minimal exposure is that the pages of a file are
scattered in location making sequential processing extremely

expensive.

2.4.6. Lock. Locks refer to the serialization
mechanism‘by which anp 05 allows multiple processes to share
files without allowing either conflicting or unpredictable
results. The way in which an 0S locks files i1s an important
characteristic of both its integrity and performance. It 13
not always the case that an 0S5 even provides locks and it
goes without saying that such systems either have little or
no concurrency to deal with or little or no cancern for

integrity (e.g., the last process to write the record wins).

2.4.6.1. Granularity. The granularity of
locks refers to the level at which locking occurs. In an 0S

that supports a low level of concurrency, locks are typic-—

181

ally very coarse; e.g., an entire file or even an entire
device will be unavailable to any other process until the
process that locked it terminates or otherwise releases the
file. To support a high degreze of concurrency, the 0S5 will
provide for very fine locking at the page or even the field
level so that many processes can concurrently update the
same file so long as they don’t attempt to change the same

data value.

2.4.6.2. Exclusivity. The exclusivity of
locks refers to the number of modes in which locks can be
obtained and the compatibility among modes. In a simple 0S
with low concurrency there will be a single mode of locking
that is exclusive; i.e., a process having a lock oh a
Fesource 1s incompatible with any other process having a
lock on that resource. In an 05 that supports a high degree
of concurrency, there will be a large rnumber of lock modes
(e.g., read only, read with possible write, read with write
intent, write intent, write for sure, etc.) and many mode
compatibilities: e.g., a process having a write intent lock
sN a resource is compatible with any number of other

processes having a read-only lock on that same resource.

2.4.6.7. Implicity. 0S°s will vary in the
deqree to which locking is implicit and to the deqgree to

which explicit locking is permitted or required. At one

182

xtreme, an 0S may require all locking to be explicit,
leaving all responsibility for correct lacking to the

user. This has the advantage of being very fast and simple
and the disadvantage of providing little guarantze for
integrity. At the cother extreme, an 0S5 may perform all
locking implicitly and not permit explicit locks. This has
the advantaqge of providing very high integrity at the
etpense of a great deal of overhead incurrad as the result
of limited knowledge. An advanced 0S5 will provide implicit
locking at all times, but will also permit a user that knows
he will rewrite an entire file to explicitly lock the entire
file so the 0S5 will not incur the overhead of implicitly
locking it one page at a time (or of bothering to allow the

process to even start until the entire file is available to

be locked).

2.4.6.4. Deadlock. Any locking protocol in
which the granularity is less than an entire set of related
files gives ris=2 to the occurrence of deadlock. Dealock is
a situation in which two processes are waiting for each
other to release a resource [3]. The major variants involve
how deadlocks are detected, and how they are broken. AN
elaborate 0S5 will periodically piece together a wait-for
graph and examine 1t for cycles (a deadlock can occur
transitively amung many processes). I¥ one 15 found, 1t

will analyze the progress of each process whose elimination

183

would break the cycle and abort and restart the process with
the least time invested. A simple 0S will merely abort all
processes at same regular interval and restart them in a

random order.

2.9. IPC. Inter-process communication (IFC) is the
means by which an 0S allows different processes to communi-
cate with each other. One major issue is the channel by
which the communication occurs. The other is how the
processzes are synchronized in order for the communication to
occur; i.e., how does one process know that another process
wants to communicate with it. Both are important character-—
istics of both the performance and functionality of an 4GS
and both present interesting proélems for the 0S since such
a great effort is invested from preventing processes from

interfering with each other.

2.5.1. Files. Ferhaps the simplest approach is
that of allowing the users themselves to establish a file an
which messages will be written and from which messages will
be read. As long as one process is the sender and the other
is the receiver, the 0S lock system will synchronize the
processes correctly. The receiver periodically requests a
read lock on the file. I+ it is granted, i1t releases the

14

lock and proceeds. If it is refused, it upgrades its

request to a write lock waits until the loctk is granted and

184

then reads the message. The sender, when it has a message
to send, repeatedly requests a write lock and releases it
until the lock is not granted and then re-requests the write
lock and waits for it to be granted and writes the message,
holds the lock for a mutually agreed upon interval (the
frequency with which the receiver requests read locks) and
then releases 1t. The result is a signal/semaphore between

both processes.

2.5.2. Shared memory. Two processes can share
some cammon memory and establish their own signal/semaphore
protocol. This is faster than the file system but requires
a small participation of the 0S5 overtly since memary is

normally protected from other processes. I.e., the 0S8 must

support an explicit "share" memory allocation reguest.

2.5.3. Pipes. The simplest completely overt
support for IPC by an 0S5 is to support an explicit request
for IFC from one process as a sender and another process as
a receiver. When a matching pair of requests are +received,
the 0S establishes a "pipe" from the sender to the re-
ceiver. The pipe is a memory queue into which the sender
writes and from which the receiver reads. Both sender and
receiver wait on "full" and "empty" signals respectively

(two—-way communication requires two pipes).

185

2.5.4. Sockets. A more complex overt IFC support
is a message pool into which many processes can write and
from which many processes can read. A socket works like a
pipe but augments the simple full/empty protocol with a
process identifier so that messages can be "addressed to"

the intended process or processes,

2.5.5. Rendezvous. The most advanced IFC is that
provided in the AFSE (Ada Programming Support Environment)
which is, for all practical purposes, an 0SS in and of
itself. In process rendezvous, any process can request,
from the 0S5, a rendezvous with one or more processes. The
0S coardinates all such requests and when a consistent set
of requests ha;e been received, all of the participating
processes are interrupted and reactivated 1n a new context
which is created by the 0S solely for the purpose of IFC,
and with a new code segment generated explicitly by the
compiler for handling IFC. It is supposed to be the case

that the compiler or the APSE checks that all rendezvous

code is consistent.

186

3. LAN System Software.

" i

Local Area Networks (LAN) are sufficiently "new!' insti-
tutions that there is little standardized terminology and
little agreement on even what comprises a LAN. On this
question, the fundamental distinction is whether the
processors (hardware systems) are closely or loosely coup-
led. A closely coupled LAN is a grouping of hardware
systems under the control ot a single LAN software system.
In this configuration, the LAN is an operating system and
has all the characteristics Just described; and there i1is no
issue of 0S5/LAN compatibility since only one system eixists.
This configuration will not be discussed. A loosely coupled
LAN i; a grouping of hardware/05 software systems that
cooperate in order to achieve saome higher—level cammon
goal. In this configuration, even if the operating systems
are uniform, it is of paramount importance that the LAN
software and the 0S software system(s) be compatible in many
respects because each 0S5 is in control of its own hardware;
the LAN is in charge of distributing data, processes and
control among the 0S°s; and each 0S5 at any given time may
operate completely independent of the LAN, completely
subservient to it, or somewhere in between. It is in this

loosely coupled context that the following discussion will

proceed.

187

A LAN consists of, first and foremost, a net (or bus or
channel or backplane or ...)} to which separate systems are
connected via a hardware interface board in the same wavy
that they would be to any other peripheral device (i.e., the
net does not have the status of the system bus unless it is
explicitly accorded that status by the 0S software). The
net can be of any kind of media (fiber optics, coaxial,
twisted pair, etc.) or combinations of media:; and a net can
be of any kind of topology (star, ring, drop, etc.) or
combinations of topologies. Neither of these parameters are
of issue. Secondly, the LAN software is software and all of
it must run somewhere, but nmot all of it necessarily runs
at the same place, and some parts of it may run at several
different places concurrently. To ease the discussion, the
term "service" always refers to some coherent piece of
sc "tware regardless of how it is distributed among systems;
and the term "server" refers to a single hardware/05 that is
connected to the net which will also be referred to as a

node.

In this context, the maijor concepts of which a LAN is
comprised are servers, services, the mapping of services to
servers, address protocol (how messages are sent and
acknowledged among nodz=s), and transactions (tasks accomp-

lished by the LAN).

188

3.1, Server. To reiterate, a server 1s a single
hardware/0S8 system or "node'" that is connected to the
net for some reason (its participation), in some way (its
coupling) with a given status (set of privileges). These,
taken singularly, serve as the principal server character-—
istics. Taken collectively, they describe the hardware

component (other than the net itself) of the LAN.

3.1.1. FParticipation. The degree to which a
server is a producer for the LAN is its raison d'etre. This
c~n range from being totally dedicated to the LAN in which
case it serves no other functions independently; to being
nothing but a consumer of LAN services in which case i1t
contributes nothing and exists solely to perform other
functions. Typically, & server is both a producer and
consumer of LAN services to some degree and the degree to
which it is a producer characterizes the server as far as
the LAN is concerned:; and the collective degree to which
servers are producers characterizes the LAN as a whole
in terms of its capacity to do work. LAN's typically have

servers of all of the types mentioned.

3.1.1.1. Dedicated Servers. A dedicated
server exists solely to serve the LAN. Pedicated servers
are usually so because of their hardware resources.

For example, a LAN may contain a print server which is

189

—

connected to a collectian of printers of various types, and

exists solely as a print .tation to serve other nodes.

3.1.1.2. Partitioned Servers. A partitioned
server 1s usually a multi-—-processing node that is parti-
tioned so that some of the processes are dedicated to the
LAN, while others are invoked on behalf of users of that
node. An exemplar of such a node would be main—frame
system that supports a large database for its users, but
some of that databacse is public to the LAN. In this case,
the 0S of that server might create some primed processes to
service incoming LAN requests, and others to service its own

users.

Fy

3.1.1.3. Available Servers. An available
server i1s a node which is functionally dedicated to its
users, not the LAN, but at varying times (e.g., at night)
has excess processing capacity which it exports to the LAN.
To put it another way, when the LAN workload is sufficiently
heavy, the LAN software may solicit help from nodes that are

connected to but not functioning on behalf of the LAN at the

moment.

J.1.2. Coupling. The coupling of a server to the
net occurs through a hardware interface board or "net
board.” What i3 1mportant about the net board in terms of

190

characterizing the server and the LAN as a whole are: (1)
the functions of which the net board is capable; and (Z) the

f

presentation of the net board to the balance of the server.

3.1.2.1. Board Functions. A net board may be
very simple, capable of merely translating a byte from an
interface register to a signal compatible with the net and
conversely. At a higher level of functionality, a net board
may implement the entire address protocol so that all the
nade has to do is create a message in a transmit buffer
whose location is known to the board, and the board wil?
carry out all the functions necessary until a receive buffer
whose location is known to the board has been filled with
the desired response. In additieon, depending on the
torology of the net, numerous LAN functions may be carried
out directly by the board without interrupting the node at
all. Such functionality might be as a repeater in a ring or

a reflectar on a draop.

3.1.2.2. Board Presentation. The way in which
thz net board appears to the server can vary widsly. It may
be interfzced as a peripheral port; i.e., a 10 bit register
with 2 data bits and two status bits. In this case 1t will
appear as a device and will probably be accommodated by the
0S as part of the file system through an associated device

driver, By contrast, it may be mapped directly into one or

191

more memory pages 1t which case it may be accommodated as

@ither a process that is accorded a share of the execution
ctycle of the node, or as shared memory that appears to be an
IFC area. When the latter is the case; i1.e.. the board
appears as IFC; there is usually one or more 0S5 procescses
communicating through it to 05 processes on other nodes.
Such a presentation is called "message passing" and the 0S5
processes are called the '"message passing kernel" (see

below).

3.1.3. Status. Every server acquires one or more
statuses with respect to the LAN and requires at least the
status of "being known" to at least one other server in the
LAN before it can acquire any additional status. The
initial status assignment can be made in a variety of ways
depending on what other statuses are defined for the LAN.
I.e., the initial status assignment protocol, alone, is a

highly characteristic of the LAN in terms of status.

J3.1.3.1. Existence. Fresuming that an "about
to be" node has the necessary hardware and software that
enable communication with other nodes of the LAN, some
process must occur by which the node becomes "known" to
these nodes. This procedure will vary in two princaple

dimensions based upon the mode of addressing emploved by the

192

LAN, and the way in which statuses are acquired within the

LAN. Only the latter is of issue here.

J.1.3.1.1. Hierarchic . In LAN in
which statuses are hierarchic, a new node will typically
become known by virtue of an action on the part of the
highest level node aor "net manager.’ I.e., an end user with
an equivalent status (e.g., the LAN administrator) will
enter the name, physical LAN address, resaurces, and other
descriptive information about the node, and grant it privil-

eges and possibly responsibilities with respect to the LAN.

J.1.3.1.2. Collateral. 1If the LAN is
primarily collateral; i.e., all nodes are essentially peers;
a new node will typically become known by one of two
processes. If the LAN implements security, the new noade
must be "escarted" into the LAN by another node which will,
on behalf of the new node, introduce it to that compartment
of the LAN in which it is known and it will acguire the
privileges accorded that compartment. If the LAN has no
security, the node may log onto the LAN as a consumer
terminal, and request admission to the LAN. This request
will be fielded by some service of the LAN that deals with

incorporating new nodes.

193

3.1.3:2, LAN: Having LAN status carries the
privilege of being solely in charge of the LAN and direocting
the behavior of any other server. Such status is accorded
under one of two circumstances. If the LAN depends an
having a "master/slave” relationship, some server will be
accorded LAN status either manually, when the NET cold-
-starts [10], automatically when the server with LAN status
elects to abdicate this status to another server, or after a
failure of the LAN-high server. If the LAN is collateral,
there is, by definition, no such status defined. There will
be, however, a similar set of privileges accorded to a '"Net
Maintenance Service (NMS)" whose primary Job is to run
diagnostics and correct failures. Every server is obligated
to cooperate with and obey the instructions of the NMS if
the LAN is to be durable, but the NMS is primarily a passive
function and will only take on a leadership role when there
is a failure of the LAN and will dispose of that role as

soon as possible thereafter.

J3.1.3.3. Transaction. In collateral LAN’s,
leadership is accomplished on a task basis. To be succes-
sful across failures, every transaction undertaken by the
LAN must be managed by a single server, with all other
participating servers subservient to it with respect to that
transaction. Note that, explicitly, a transaction only

involves multiple services, not servers. However, the

194

mapping of services to servers will usually vield the case
of multiple servers participating in a transaction.
Nevertheless, it is not sufficient to the transaction
management protocol (see below) that a single service be in
charge (that is always the case anyway since trancaction
management, itself, is a service), but rather that a single
server be in charge, and it will likely be (but not neces-
sarily) one of the servers invoked by one of the services,
and usually the server in which the transaction began. The
result is that, at any given time, a server will concur-
rently have the status of transaction manager for some
transactions as well as being a participant in other
transactions and being subservient to those transaction

managers.

3.1.3.4. Service. If a service is distrib-
uted across multiple servers, one of those servers may
acquire the status of a service manager. This is not a
requirement, but rather the fallout of the design of the
service. For example, a database service may well be
designed to have a single server fielding all requests for
the service and parsing the requests prior to distributing
them so that parse trees are the means of communicating and
nDarsing does not have to be repeated. Since that server isg
the node that acknowiedges the recernt of all requests, it

is reasonable to have that node be in charge of all request

195

scheduling and result distribution which effectively makes

it a service manager.

3.1.3.5. Sub-service. If there is a service
manager, then other servers in that service may take on a
sub—-service status which is to say that they may not even be
known to servers outside the service, and respond only to
requests of the service manager. Again, this is usually a

service design consideration.

3.2. Service. A service is a functionally coherent
software system that is capable of performing one or more
well-defined tasks for the LAN or its users. Some services
are integral to the LAN and the LAN could not operate
without them. These would include net maintenance, transac-
tion management, addressing, etc. Others are much like
general applications such as word processing and file
management while still others are organizational applica-
tions (e.g., accounting). For the purposes aof this discus-—
sion, it 1s not as important to pursue the question of what
services exist as it is to discuss what kind of services can
exist for this will characterize the LAN as a general
purpose system. And the principal characteristic that
limits the possibility of a service is the mapping of

services to servers.

196

3.2.1. Contfined. A service is said to be "con-
fined" if it must exist on a specified server. Confined
services arise either because of specific hardware require-
ments or a limitation of the LAN. An exemplar of the
former would be a LAN in which only one server had a
printer. The print service would cbviously be confined to
that server. The latter occurs when the addressing func-—
tionality of the LAN is limited such that: (1) the only
status conferrable to a server is that of service manager;
i.e., there is no sub-—-service status; and (b) a service is
addressable only by name and cannot be qualified by loca-

tion.

J.2.2. Migrant. A migrant service obeys the
constraint of a confined service that it must exist on a
single serveri however it is not necessary to specify which
server. It is thus able to migrate from one server to
another but will only exist on a single server at any given
time. Migrant services could arise from a LAN limitation
that a service cannot be distributed or replicated (see
below) but ususally arise because of a functional requirement
of the service. An exemplar of the latter would be the net
maintenance service. Even if the LAN supported replicated
services, the net maintenance service would not be allowed
to exist on multiple servers because they would be in mutual

conflict.

197

3.2.3. Singular. A singular service refers
directly to the LAN constraint that messages are addressed
to services by server name through a 1:1 service:server
mapping. Under such limitations, the only way to replicate
a service on more than one server is to give it another
name. E£.g., if it is desired to have the print service at
two locations, the services would have their location
embedded in their name such as Print-LRI and Frint-I1IAS. The
LAN would not be aware that the services had any similar-
ities and wauld never attempt to use one in place of

the other.

3.2.4, Plural. A plural service is permitted when
LAN addresses contain a location component. Each instantia-
tion of the service i1s still restricted to be wholly
contained within a single server, however there may be many
such servers offering that service. For example, if many of
the servers in the LAN have printers, then all of those
could run the print service concurrently and a user could
either specify a particular location at which the printout
is desired, or could allow the print service to schedule the
print request on the first available server. When plural
services are permitted, it is necessary that something
schedule and route requests for the service. In some cacses,

particularly those in which scheduling does not require

198

knowledge of server resources, there may exist a scheduling
service that will route the request. When inside knowledge
is required (e.g., in a file service where each server has
different files) the service will narmally provide its for

its own scheduling through a message protocol.

3.2.5. Distributed. A distributed service is one
in which the service spans several servers, each running
only part of the service. The ability to have a distributed
service is not limited by the LAN directly, but 1s more or
less facilitated by the LAN through various support mechan-
isms. At the least level of support, the designers of a
distributed service will have to determine a priori how to
allocate the service among servers, provide for their own
intra-service message and transaction protocol, and to
decide the means by which requeste for the service will be
fielded and the results disseminated. At the highest level
of support, the LAN will provide all of these functions as
services and will provide a distributed compiler that allows
the user to write the service without concern for which
procedures reside on different servers and which are
collocated, a fact which 1s, itself, one that can change

dynamically during processing.

3.3. Address. For one service to address another

service 1s to get information to it (a request) and receive

199

informatiaon from it (a response) anc this represents

the inter—-service communication capability of a LAN. In
addition, if the LAN supparts distributed services, it 1s
also necessary for the processes of a service to address
other processes of the service which may not be collocated
on the same server and this represents the intra—-service
communication capability of the LAN. It is possible for a
LAN to employ different mechanisms for inter— armd intra-ser-
vice communication and such will be the case where there is
a vast difference in the volume and frequency of messages

of each type. Conversely, the LAN is considerably simpli-
fied if only one form of address serves both requirements.
The way 1in which a LAN supports address is characteristic of
its functionality, its performance, and its utility as a
whole. The following descriptions assume, for simplicity,
that all nodes are connected directly to the net, although
this is not a requirement (connectiocons can be virtual even
though they may not physically exist at the lower levels of

the net protocol).

J.3.1. Broadcast. FEy far the simplest means of
synchronous address is broadcast. In broadcast addressing,

the sending service encodes a message with both a source and
destination identifier and transfers it to the net board for
transmission. The net board then repeatedly transmits the

message each time it receives the token (in a token—-passing

200

T

net) or finds an avallable slot (im a slotted net) for some
L routine interval. The receiver cide of the board both
downloads every message on the net into a receive butfer as
well as repeating it 1f the net technology requires repeat-
ers. Conversely, the net board examines every message on
the net and determines whether the encoded address matches

(or includes) 1ts own address. I1f so0, it removes the

message from the buffer, replaces it with an acknowledgement
message, transmits the acknowledgement message and generates
an interrupt in the server. Whatever service i1is running in
the server proceeds to examine the message and determine
what, if any, action it should take. As would be expected,
broadcast works well when services are highly replicated
resulting in a high ratio of receivers to senders, messages

are highly asynchronous, and security is of no concern.

3.3.2. Circuits. Circuits are a refinement
of broadcast addressing in that only the source and destin-
ation identifiers are broadcast. The receivers, when they
get a matching address, then prepare to receive the message
contents as the very next message with a matching identi-
fier. The sender waits for an acknowledgement from all
destinations, i1f all destipations are known, or for some
period of time otherwise and then broadcasts the content of
the message the next time 1t has access to the net.

Circuits greatly reduce both the amount of information

201

on the net and the amount of time spent downloading and
examining information, especially 1+ messages tend to be

quite large.

3.3.3. Packets. Fackets are a refinement of
circuits that allow messages to be brokzn up into short
segments so that only part of the message 1s transferrad
each time the circuit is establishzd. Fackets provide for a

fairer distribution of the net in the presence of long

messages while still preserving message synchrony. When
messages are htypically very short, the difference between

circuits and packets becomes minimal.

3.3.4. Datagrams. A datagram refers to a message
prefaced by a source and destination address that is sent
independently of any other messages flowing between those
addresses. As such, it is very simple to implement but does
not encode any form of synchronization. I.e.., datagrams are
not necessarily received in the order they are sent and
there is no guarantee that a datagram will be delivered.
Datagrams are very efficient +or inter-—-service communication
which is usually of an asynchronous nature anyway, and for
intra-service communication in which the synchronization is
o0 complex that the service will normally implement its own
synchronization protocol regardless of what the LAN provides

(transaction management service is of this type). It is

202

quite common for a LAN to be partitioned with some of the
bandwidth reserved for circuits, and any time unused by

circuits available for datagram traffic.

3.3.5. Message Passing. Message passing refers to
the transfer of data directly between or amang the processes
that implement a service via an underlying inter-process
communication service. Such a service is referred to as a
"message passing kernel" and has the distinct advantage that
the processes of a service communicate with each other at
all times as if they were running on the same server. Thus,
programs written to provide a function in a stand-—-alone
environment are very easily ported to provide those func-
tions as serwvices an the LAN. The difficulty with message
passing is that the user of the kernel implicitly depends on
the kernel to provide the same level of synchrony and
guarantee that the 0S5 IFC does. It also requires that a
context switch occur in the 08 each time the kernel is
accessed since it runs as an 05 process; i.e.. each IFC, in
effect, results in three IFC°s, one from the local process
to the local message passing kernel, another to the remote
kernel, and & third betwe=n the remote kernel and the remote

process.

3.3.6. Tickets. Tickets are an advancement over

messaqe passing that bear the same relationship to it as

203

primed processes do to fprked processes. When a receiving
process initializes for a processing session,. 1t broadcasts
(via the message passing kernel) a set of "blank order
forms" called tickets in the amount of the number of
requests it expects to service during that session. Gther
services similarly retrieve as many tickets as they expect
to need during that session. This has the effect of
pre—establishing all of the IPC's to the point of being
ready to accept data (similar to a virtual circuit).

When a requesting service has an actual service request,

it simply fills in the contents of the message which causes

the service that sent the tickets to be interrupted.

3.4. Transaction. The purpose of a LAN is to accomp-
lish work by a concerted and cooperative effort among the
services of the LAN. To do so in an orderly manner, the LAN
implements the concept of a transaction to represent a unit
of work in much the same way that an 0S5 implements the
concept of a process. A transaction has three basic
properties: it 1 atomic (i.e., either it occurs or it
doesn’t); it is durable (i.e., once completed its effects
can only be altered by another transaction); and it is
consistent (i.e., if the state of the LAN was consis-
tent before the transaction it will be so after the transac-
tion). The means by which the transaction concept is

implemented in the LAN is the primary characteristic of its

204

integrity. The function of transaction management may be
implemented as a service or directly - in the kernel of the

LAN.

3.4.1. Implicity. The degree to which transac-—
tions are explicitly started by the user or implicitly
started by the LAN has a direct bearing on its integrity and
performance. Some LAN?’s will implicitly begin a transaction
at the first attempt to access a recoverable resource [11]
by any process. This offers high integrity when it works
correctly but this is not always the case since the LAN does
not usually know which other processes the accessing process
is cooperating and must infer this from the IFC. The
opposite extreme is to provide for an explicit Regin
Transaction call. I¥f the protocol is followed by all users,
the integrity is Just as high if not higher than implicit
transactions. Explicit transactions also allow the user
option of not invoking transaction management if the user in
unconcerned about the aftermath of a failure:; or knows it
will not engage in any actions that could leave the system

in an inconsistent state.

3.4.2. Serialization. In order to implement
transactions, there must be a mechanism for serializing the
actions affecting recoverable resources so that if a failure

occurs, the sequence of actions taken or intended can be

205

reconstructed and either re-done or un-—-done. The means by
which a LAN implements serialization is a principle charac-
teristic of the LAN and the possibilities for serialization

are as follows.

3.4.2.1. Locks. Locks inherently sequence the
processes accessing resources through queues. The imple-—
mentation of locks is similar to that described for the 0S
file system. Locks are successful if all users obey the
locking protocol. Failure to obey the protocol does not
allow a user to actually access the resource, but it denies
the LAN of the knowledge of the sequence in which requests

for the resource occurred.

3.4.2.2. Timestamps. An alternative to locks
are timestamps. Every process request to access a resource
is appended with a timestamp indicating "when" the request
was issued. A timestamp is not usually derived from a clock
[12] but from a counter that is passed among the servers by
the LAN. When a server receives the counter, it increments
it for each resource request it issues and then passes it to
the next server. A timestamp is similar to a token in a
token-passing net. Timestamps are relatively expensive to
implement since they require that every server update and
pass the clock even if that server has no resource requests

(which is most of the time). They also impose the require-

206

ment for & very elaborate restart process (see below) in the
event that the failure causes the clock to be lost (e.g., if

the faitlure occurs in the server with the clock).

3.4.2.3. Tickets. Tickets are an extension of
tickets already described faor messages to cover ali re-—
sources of the LAN. In ticket serialization, a process
acquires numbered tickets for each resource it expects to
request during a processing session. When it has a reguest,
it issues the request appended with the lowest numbered
ticket in its possession. If the request is not granted, it
continually reissues the request appended with the next
highest ticket until the request is granted. Tickets "pre-
-queue" resource requests in order to absorb as much of the

serialization overhead as possible in advance.

3.4.3. Logs. I1¥f recovery is to be possible, every
transaction must create a log of all its actiaons (or
intentions - see abort processing below) with respect to
each recoverable resource which it accesses during the
transaction. Note that, in order to be of any use, a log
must always be treated as a non-recoverable resource; i.e.,
it is the very fact that the 1log is inconsistent after a
failure that makes it possible to recover other resources to
a consistent state. The kind of log maintained is charac-

teristic of the LAN in both performance and integrity.

207

3.4.3.1. Undo List: An undo list is an
optimistic approach that assumes that most transactions
complete successfully. The LAN, when it receives a request
to change the state of (update) a resource, writes the
current state of the resource to the list and thern actually
services the request. It is optimistic in that, if the
transaction completes successfully, nothing else has to be
done; the updates have already been processed. In the event
of a failure, the prior state of the resource is recovered
from the list and the resource is synchronized to that

state.

3.4.3.2. Intentions List. An intentions list

is a pessimistic approach that assumes that most trans-—
actions fail before completion. The LAN, when it receives a
request the change the state of a resource, writes that
request to the intentions list and does nothing to the
resource. When the transaction completes successfully., the
LAN reads the requests from the intentions list and services
them at that time. It is pessimistic in that when a failure
occurs, nothing else has to be done; no updates to resources
have actually occurred so the resources are still in the

state they had prior to the commencement of the transaction.

3.4.3.3. MWrite Ahead Log. A write ahead log
(WAL) is an approach that assumes that the processes i1ssuing
requests are the only things capable of correctly recovering
resources. The LAN, when it receives a request to change
the state of a resource, returns a unique logq address to the
calling process. It then holds the request in abeyance
until it receives a write request to the log at that address
at which time it commences to service the original request.
The LAN has no knowledge of what is written to the log
except the identifiers of both the process and the resource
and the log address. When a transaction completes either.
successfully or unsuccessfully, the LAN recalls every
process and passes them the list of log addresses. What the
processes do when they are recalled is unknown to the LAN.
Transactions implemented via WAL are called two—-phase
transactions: i.e., every request is processed twice, once
during phase one of the transaction (prior to destiny), and
again during phase two (when it is known whether the

transaction was successful or not).

3.4.4. Coordination. Whenever a transaction
involves more than one process the processes have to be
coordinated during the transaction. Moreover, if the
transaction involves more than one server, the coordin-
ation must be distributed. Coordination may be implemented

by the transaction management service directly as part of an

209

existing process, as a new process, or as a set of proces-

ses. If the transaction is distributed, the latter of these
will be a requirement since a process cannot span servers
and this will be the case assumed in the following discus-—
sion. The functions of transaction coordination that
characterize the LAN are the way in which the transaction is
initiated, how processes enter and exit the transaction
including the effects of nesting, and how the transaction is

concluded (either committed or aborted).

3.4.4.1. Begin Transaction. When.-a transac-
tion begins, either explicitly or implicitly, it must be
given a unique identity and some structure must be estab-
lished for recording information about the state of the
transaction (similar to what an 0S must do when a process
begins). This is accomplished by establishing a process
when the transaction begins to serve as a place holder for
the transaction. The process may be established on the
server where the transaction began, the server where
the (first) recoverable resource is requested, or a server
dedicated to transaction management service. The former
approach is preferred for performance in that no messaqes
will be generated unless the transaction is distributed.
The latter is preferred for simplicity but incurs a very
high risk for the LAN as a whole if a failure occurs in that

server. In all cases, the process that requested the

r
—
[«

transaction is given the unique transaction identifier which
will be appended explicitly or implicitly to every request

of that process until the transaction campletes.

3.4.4.2. Entry. A process enters a transac-
tion whenever it is invoked by a process that is part of
that transaction. This will normally be explicit to the
invoked process to the degree that the request to begin the
transaction by the invoking process was explicit [13Z]. I+
the entering process is on the same server, the transaction
management process on that server needs-to be informed about
the new process. This can be accomplished by an explicit
request by the invoked process to enter the transaction, or
the transaction management process can be invoked by the LAN
automatically as part of process invocation sequence. In
the latter case, the 0S8 on that server must, at a minimum,
be aware of the transaction through some mechanism. If the
entering process is on another server, then the transaction
management service must spawn a process on that server to
either parallel its own functioning, or to intercept and
pass transaction related messages. It is not necessary for
the user to know which method is employed; and in either
case the remote transaction management process will be
invoked subservient to the original transaction process
(i.e., will not only run as a part of that transaction., but

will have IFC with it).

214,43, NestiR8: When a process enters a
transaction, the guestion arises as to whether that process
is nested in the transaction in the same sense as it is
nested in the process that invoked the transaction, or it is
collateral with all processes in the transaction. In the
former case, the nested process will be invoked for commit/—
abort processing (see below) when it terminates. In the
latter case it will be invoked when the transaction termin-
ates, I+ the process is nested, then its commit/abort
processing must be based on its own destiny since the
destiny of the transaction is unknown. If the LAN supports
such nesting, it is critical that the LAN or the users or
both have some mechanism for creating compensating trans-
actions to undo the effects of a nested process that

commits since the transaction may abort at a later time.

3.4.4.4. #it. When a process exits a
transaction the transaction management service must be:
invoked to perform exit processing. If the transaction
is single—-phase, this will consist of acquirimng all of locks
owned by the process if locks are employed. and all of the
resources acquired by the process, so that the log can be
processed when the transaction ends. I+ the trarmsaction is
two—-phase, this will simply consist of noting on the log

that the process has completed phase~one processing and is

[
-
r

prepared to be recalled. In the latter case, it 1= neces-
sary that the exiting process be prepared to go ei1ther way

(cammit or abort) at the end of phase one.

3.4.4.5. Destiny. The destiny of a transac-
tion is either commit (successful) or abort (unsuccessful).
The means by which the transaction management service
determines and acts an the destiny is an important charac-
teristic as is when the determinations and actions occur.
In one phase transactions, each process is asked for a
destiny when it terminates. In two phase transactions, pro-
cesses will be asked for a destiny by an explicit request of
the transaction management service. The determination of
destiny is almost always based on unanimous commit (i.e.,
either all processes vote commit in which case the destiny
is coammit or one process vates abort in which case the
destiny is abort) although some LAN" s will employ a non-
-unanimous voting scheme. In unanimous commit, there also
exists the possibility for unilateral abort; i.e., since one
abort is sufficient to abort the transaction, the transac-
tion management service has the option to interrupt all
processes and direct them to commence abort processing as
soon as one process terminates with an abort destiny. This
is always possible in a one phase transaction by simply

requesting the 0S5 on each server to abort the processes. In

+J3
ot
i

two phase transactions, each process must have code to

support early abort processing.

3.4.4.6. Phase Transition. In two phase
transaction processing, phase transition refers to the
processing that occurs between the determination of destiny
and the acknowledgement by all processes of receipt of
destiny. Once all processes have voted and the destiny
determined, the transaction management service enters the
single most critical stage. It broadcasts the destiny to
each process -and logs the acknowledgements as they arrive.
It does not write the destiny (transition) record to the
log until every process has correctly acknawledged the
destiny broadcast. The reason for this is that a process in
a transaction with a commit destiny may still fail before
acknowledging the destiny which qill cause the destiny to be
changed. When the destiny acknowledgements have been
received (or the transaction management service has timed-
-out waiting for one or more acknowledgements) the destiny
record is written to the log and the moment that the destiny
record is written is called the "instant of commit” in that
any failure prior to that is equivalent to an abort, and
once the record is written, the destiny of the transaction
is guaranteed (see restart below). The only window for
failure of the transaction management serviced is the time

during which the transaction record is being written.

214

I.4.4.7. Commit/Abort Processing. In one
phase transactians, the transactian management service
commences to praocess the logs of all participating processes
in whichever manner the logging protocol and destiny
prescribe. In two phase transactions, the transaction
management service proceeds to persistently recall each
participating process to perform its own commit/abart
processing and records the acknowledgement of each process
that iﬁs phase two processing is complete. The calls are
persistent in that a process may complete phase two process-—
ing but a failure may occur in the process or elsewhere that
prevents the transaction management service from receiving
the acknowledgement. It is therefore necessary that all
processes in a two phase transaction be capable of receiving

idempotent requests for phase two processing.

3.4.4.8. End Transaction. When the transac-—
tion management service completes log processing in a one
phase transaction or receives acknowledgement from all
participating processes in a two phase transaction that
phase two processing is complete, either an explicit "end
transaction" record is written to the log if the log is
incremental, or the log is deleted. In addition, all
resources and locks acquired during the transaction are

released.

"
[
w

3.4.5. Restart Processing. The abilitv of a LAN
to restart either after a complete shutdown or a failure of
one or more components is the principle characteristic of
its robustness. In a simple LAN, no explicit restart
processing 1s performed except the deletion of any incom-
plete transaction logs. This results indirectly in all
transactions that were in progress acquiring the status of
having been aborted prior to the failure. The next level of
sophistication is to examine the logs of any transactions
that were in process to determine which process started the
transaction and to recover the message which caused the
process to be invoked. Then the log is delet=d and the
process 1s restarted with the original message. Note that
this‘form of restart will not necessarily produce the same
cutcome had thg transaction completed prior to failure since
there is no determination of how far the transaction had
progressed (e.g., messages may have been sent to other
processes that have not failed). The most sophisticated
restart processing involves a detailed examination of the

1og which proceeds as follows,

3.4.5.1. ET Record. I1f an ET record is found
in the log, i1t is assumed that the transaction was completed

prior to the failure and was successfully committed or

aborted as indicated in the destiny record. I1f incremental

logaing is not in use, the log is deleted.

3.4.5.2. Transition Record. If the ET record
is not present but the phase transition record is present,
then the restart processor compares the list of destiny
acknowledgements with the list of phase two completion
records and persistently recalls any processes that are
aon the first list but not on the second. Again, processes

are assumed to be capable of fielding idempotent calls.

3.4.5.3. Destiny Acknowledgement. If the
transition record is not present but there is at least one
vote request acknowledgement, the restart processor compares
the list of vote request acknowledgements to the list of
destiny acknowledgements and re—transmits the destiny to any

processes on the first list that are not on the second.

3.4.5.4. Vote Request Acknowledgement . If
there is at least one vote request acknowledgement, the
restart processor re-broadcasts the vote requecst. The
processes that did send a vote request acknowledgement
before the failure will merely interpret this as a non—-ack-
nowledgement of the message and will re-—-transmit it. In this
case, the restart processor must be able to deal with

idempotent acknowledgements.

3.4.5.5. No Vote Request Acknowledgement, If
there are no vote request acknowledgements, the restart
processor will assume that no vote reguest was ever re-—
ceived, hence the transaction had never completed phase one
and will treat it as a case of unilateral abort by broad-
casting an explicit abort destiny and resuming from that
point. This serves to cause processes that are still
waiting for a vote request to commence abort processing,
thereby cleaning up the remnants of the transaction. When
the transaction reaches normal ET-abort, the restart
processor will restart the entire transaction. Depending on
the nature of the failure, this process may fail repeatedly
to the point that some manual intervention will be required

£141.

4, References.

[1]J. End users may perceive i1t to be the case that they

do, on occasian, interface with the operating system (e.q.,
running & program, copying & file, etc.) but this is
incorrect. In such circumstances they are, in +tact,
interfacing with an application program commonly known as a
"shell" or "command interpreter'" which is totally unknown to
the operating system. To reify this point, in MS5-DOS a
command line interpreter named "command.com" is supplied by
Microsoft on the distribution disk. However, there is a
variable in the MS-DOS environment table that specifies what
program to execute by default if no other program is
running. That variable comes initialized as '"command.com"
but can be changed to specify any program whatsoever such as
a text editor, word-processor or windowing system. And it
is these, not the 0S, that the user interacts with. The
user per se of the 0S is the person that writes these programs.

£23. Similarly, the problem of infinite regression in the
hardware is also solved by a bootstrap. In this case, the
goal is to load the aperating system. But that can’t happen
until a process that loads other processes, a "loader” has
started. And since a full-featured loader is, itself, a
complex program, yet another, much simpler program is needed
to load the loader. This regression continues until a very
simple program (e.q., read the contents of track 0O into
memory starting at location O and begin executing instruc-
tions at location O) is reached. This program is then
implemented in the hardware as a Read Only Memory (ROM)

chip or as a set of binary switches. The latter allows for
changing the bootstrap if necessary while the former does not.

[Z]. Whether or not code is re-entrant is as much a
function of the programmer and compiler as it is of the 0S.
Re-entrant code has the property that its erxecution can be
interrupted at any pagoint, and re-entered at any point with a
different data segment. I.e., the compiler (or the program-
mer) provides for the capability to save all of the inform-
ation necessary to restart processing after an interrupt,
including the information about what values were contained
in all of the data variables. Most modern compilers can
generate such code with relative ease since they are
stack-oriented: i.e., they push an activation record

onto a stack each time a procedure begins execution,
including the variables that the procedure was called with.
Making such code re-entrant merely requires having multiple
stacks and stack pointers. Dlder, unstructured languages
are difficult and often impossible to make re—entrant. To

219

my knowledge, there are no re-entrant FORTRAN compilers in e

£41. There are vet faster memories such as the i1nstruction
pipeline or pre—~fetch queue for parallel or qQquasi-parallel
CFU's respectively, but these are not normally visible to
the 0OS. There are also hardware registers ftor specitic CFU
tunctions that may be visible to the 05 for commumicating
with the CFU, but it is the CFU, not the 0S, that manages
the allocation of these. Unfortunately (faor this discus-
sion) there are also non-specitic hardware registers that
are intended to be visible to the 05 and even to the user,
but that is aone level of detail too deep far this discus-
sion.

[s1. It should come as no surprise that despite the
elegance and portability of layered software (e.g., Open
System Interconnect), system developers remain very reluc-
tant to separate functions and allocate them to different
processes. Their reluctance is based solely on the cost of
performing a context switch which would otherwise be
unnecessary if the functions were collocated in the same
process. And until the cost of context switching is brought
down to an acceptable level, monolithic operating systems
will continue to enjoy a large advocacy in spite of all
their undesirable consequences.

L61. The use of the term “page" is somewhat arbitrary.
Disks, for example have "sectors" and tapes have "blocks.”
FPage is a useful term in that it is both neutral to media
and consistent with the terminology of memory. And since
virtual systems, do not make a strong distinction between
files and memory, the consistency is desireable.

£7]1. Redirecting refers to the capability of writing a
program that performs 1/0 without binding that program to a
particul ar device. In this case, device binding is done at
process invocation rather than at program compilation and
such programs are traditionally called "filters" in that
they can be inserted in a "pipeline" of processes in which
the output of one process is the input to another.

(81l1. A primary exemplar of a virtual device is a RAM-
~disk. In many systems, there is considerably more RAM
present than the 0S is capable of managing, due to limita-
tions of the address bus. While a user can access this
additional RAM in any way he chooses, an easy way to access
it is as a file that Just happens to be very fast. Thig can
be done by writing a device driver. In most systems., a
driver consists simply of a standard set of routines that
implement the standard file functions of open, close, get
byte, and put byte, and the code to both initialize the
device and turn it off.

220

vistence.

~~;

(?]. For example, process Pl obtains a read laock on
records Ra and Rb and decides based on the contente of Rb
that it wants to upgrade its lock on Ra to a write lock (a
write lock is incompatible with any other lock mode).
Cancurrently, nrocess F2Z abtains a read lock on records FRb
and Ra and decides based on the contents of Ra that it wants
to upgrade its lock on Rb to a write lock. F1l is now
waiting for the read lock on Ra to be releaszed while FZ is
waiting the read lock on Rb to be released and neither
ptrrocess is able to proceed (F1 and FZ do not krnow of =sach
others existence, let alone what locks they hawvel,

[103. The traditional terminology of "cold" and "warm"
starts is misleading for a LAN. With so many processars
involved, a cold or power-off start may only ogccur once in
the life of the LAN; i1i.e., when it is ftirst created. From
then on there will always be some complement of servers in
operation and/or some transactiocns in progress. Subsequent
equivalents of cold and warm starts are referred to, in a
LAN, as testarts: i.e., attempts to restore the net to a
current operational status.

C111. A recoverable resource is one that is guaranteed by
the LAN to survive a failure of any or all of the servers in
the LAN; and is quaranteed to be in a&a consistent state at
all times in which the LAN is in a consistent state.
Transactions are only meaningful in the caontext of recover-
able resources.

[12]1. The use of the term "clock" is purely mnemonic. In a
high-speed LAN the use of a real clock on each server is
impossible for at least two reasons: (1) the frequency of
the clock would need to be in nanoseconds; and (Z) since
each server has its own clock, there is no way to guarantee
that is in synchrony with the other clocks to the nanosecond
level other than to pass some kind of synchronizing message
around the LAN. And as long as a message needs to be
passed, the message itself can serve as a clock without need
to reference any real clock.

[1Z]. Unless WAL is employed as the logging mechanism,

processes do not necessarily have to be aware that they are
participating in a transaction. However, it is routine to
provide that visibility so that the user can write programs
more efficiently. When a WAL protocol is employed, all

programs must provide code segments for phase 1 and phase 2
processing; a requirement usually enforced by the compiler.

C141. The manual intervention is critical. An example
would be an air traffic control system that has responded
affirmatively to a request for permission to land from an
airliner, but due to some hardware malfunction, failed Just

221

one instruction prior to the instruction that would physic—

ally tramnsmit the message. To every process in the system,
and every person observing the system, it would appear that
the message has been sent, even though the system is
repeatedly restarting that transaction. However, unless
someane manually inspects the log, the airliner will run out
of fuel and crash because the only way of knowing that the
message going out is not being sent is to see that, on

each restart, the process that physically sends messages
does not acknowledge the vote request meaning it is failing
somewhere between acknowledging the end of phase one
processing and receiving the vote request.

DS
Sl

A Knowledge Dictionary System for Scheduling Support

P.6. Ossorio and L.S. Schneider

Appendix C

Submitted by

Linguistic Research Institute, Inc.
S600 Arapahoe Avenue

Boulder, Colorado 80303

Submitted to
Rome Air Development Center
Griffiss AFB, New York

i
Al al e

Table: ..\..\dataloslan.asc Fage:

—— 05 Parameters / LAN Parameters —

1 Process

1a Initiate

la¢l) Spawned

1a(2) Forked

1a(3) Primed

1b Execute

ib(1) Dedicated
ib(2) Sliced

1b(3) Interrupt
1b(4) Stacked

1c Code Segment
ic(1) Duplicate
1c(2) Single Reentrant
1c(3) Multiple Reentrant
id Data Segment
id(1) Process-Bound
1d (2) Code-Bound

2 Memory

2a Real

2a(l) Linear

2a(2) Segmented

2a(3) Paged

2a(4) Protected

2b Virtual

2b(1) Swap

2b(2) Demand Page

2b(3) Explicit

3 Context

3a Create

3b Switch

3c Exit

4 Files

4a Data

4a(l) Format

4a{1)a) Stream

4a(1)b) Text

4a(l)c) Paged

4a(1)d) Structured

4a(2) Access

4a(2)a) Sequential

4a¢(2)b) Direct

4a(2)c) Indexed

4a{2)d) Indexed Sequential
4a(2)e) Virtual Indexed Sequential
4a(3) Versions

4a(3)a) Snapshots

4a(3)b) Audit Trails
4a(3)c) Differential Files
4b Device

1 Strip:

Server ¥
[Exists At]
[Occurs At]
[Spawns At]
{Forks Atl
(Primes At]
[Occurs At]

(Exists At]

[Exists At]

[Exists Atl
[Part 01

[Exists At]

[Exists At]

At]
At]
At]

{Exists
(Exists
(Exists

[Dccurs At]

[Exists At]

(Fart 0f]

<24

— Participate %
{Implements]
[Initiates]
[Spawns]

LForks]

{Primes]

Table: ..\..\data\oslan.asc Fage:

—~— (05 Parameters / LAN Farameters -—

4b(3) Definable
4b(4) Raw

4c Caching

4c (1) Synchronous
4c(2) Read Ahead
4c(3) MWrite Behind
4d Imaging

4d (1) User

4d(2) Before
4d(3) After

4d(4) Mirror

4e Update

4e(1) In Place
4e(2) Replace

44 Locking

4f (1) OGranularity
44¢(2) Exclusivity
4¢(3) Implicity
4+ (4) Deadlock

5 IPC

Sa Files

Sb Shared Memory
Sc Pipes

5d Sockets

Se Rendezvous

2 Strip:

[Occurs At)

[Occurs At]

[Occurs Atl

[Occurs At]

[Occurc At]

—— Server i

1

—— Farticipate

w%

Table: ..\..\dataloslan.asc Fage: 1 Strip: 2

+~— Dedicated — Fartitioned —

[Exists At]
[Occures At
[Zcawns At
[Forks At

[(Frimes At]

226

Available ————— Server =

Table:

L

—— Dedicated

..\..\datavoslan.asc Fage: 2 Strip:

Partitioned ———— Available

%

—— Server =

Table: ..\..\data\oslan.asc

s

+— Coupled =

—r— Function

Page:

o v
ey

——

-

1

23

Strip: I

Transceive —-———— Repeat ————

Table: ..\..\dataloslan.asc Fage: 2 Strip: 3
+—-— Coupled ¥¥ ——— Function =% N Transceive ————— Repeat
229

Table: ..\..\dataloslan.asc Fage: 1 Strip: 4

Server & ———
[Exists At]
{Occurs At1l
[(Spawns At
[(Forks At3]
(Primes At]

+———— Buffer Decode

Coupled %% —

230

Table: ..\..\data\oslan.asc FPage: 2 Strip: 4

—— Server ¥ —

+————— Butfer —— Decode

a7
o

Coupled =%

Table:

— Interface =:

>

.« \..\data\aslan.asc Fage:

1

Strip:

Port

Device

Memory

Table: ..\..\dataloslan.asc Fage: Z OStrip: 5

—— Interface B ——p— Fort Device Memory

~ery
Lot

Table:

Server »»
[Exists At]
[Occurs At]
[Spawns At)
LForks At]
LPrimes At]

.« \..\data\osl an.asc

Fage:

—— Status »»
[Implements]
[Initializes]
[Spawns]
[Forkel

CNAJ

1 Strip:

Exist #»
{Implements]
[Initializes]
[Spawns]
[Forks]

{NA1J

234

—— Hierarchy ——

{Incompatiblel
[Compatible]
{NAJ

Table: ..\..\dataloslan.asc Page: 2 Strip: 6

+—— Server »» — Status »% — Exist #¥% —0——— Hierarchy

Table: ..\..\dataloslan.asc Fage: 1 Strip: 7
+— Collateral ———— Server »» —— Status »» LAN
[Exists At] {Implements]
[Occurs At {Acquires]
[Compatiblel [Spawns At] [Spawnsl [0S = LAN1]
[Incompatible] [Forks At] [Forksl [Incompatiblel]
CNA1 [Primes At1l {(Primes] [0S = LAN]

Table: ..\..\dataloslan.asc Fage:

+—— Collateral ——

—— Server »% ——

2 Strip:

——— Status

237

FE

7

LAN

Table: ..\..\dataloslan.asc Fage: 1 Strip: 8

+— Transaction —-—p——— Service

CImplements])
[Initiates]
[Compatiblel [Compatible]l [0S = Servicel [Compatible]
[(Nested in Parent]|[Incompatible] [Parent = Servicel|(Compatible]
{Compatiblel [Compatiblel {0S = Servicel [Compatible]

238

S SubSEFViCE ———————— SErViCE 3

Table: ..\..\data\oslan.asc Fage:

— Transaction —

Service

’

2 Strip: 8

—— Subservice ————— Service

5

Table: ..\..\data\oslan.asc Fage: 1 Strip: 9

Confined Migrant —————— Singular —— Plural
(Compatiblel [Remote Spawnl [Compatiblel [Compatiblel
[Compatiblel [Remote Forkl INAJ [{Compatiblel
[Compatiblel [Remote Primel INAJ [Compatiblel

240

Table: ..\..\dataloslan.asc Fage: 2 Strip: ?

Confined —————— Migrant

———— Singular Flural

Table: ..\..\dataloslan.asc Fage: 1 Strip: 10

+—— Distributed ———— Address #% —— Broadcast Circuit
[Implements][Hasl
[Remote] (Acquires]
[Remote Spawnl [(Direct] [Compatiblel [Compatiblel
[Remote Forkl [Via Farent] [Via Farent] {Via Farent]
{Remote Primel {Direct] {(Compatiblel {Compatible]

242

Table: ..\..\dataloslan.asc Faqge: < Strip: 10

+—— Distributed ———— Address »#% — Broadcast —— Circuit

Table: ..\..\dataloslan.asc Faqge:

Packet

[Compatiblel]
{Via Parentl
[(Compatiblel

i

Strip: 11

Ticket

Datagram Message
[Compatiblel [Compatiblel
[Via Parent] [Incompatiblel
[Compatible] [Compatiblel]

244

{Incompatiblel
{Incompatiblel
[Compatiblel

Table: ..\..\datal\oslan.asc Fage: 2 Strip: 11

Packet Ticket

Datagram ——

Message

Table:

+— Transaction ¥ 4
LImplements]
{Initiates]
[Spawns]lEnters]
[Inherits]iNests]
[(BeginsJ[Enters]

.«\..\data\osl an.asc

—— Implicity ——

Fage: 1

[Concurrent]

[(Concurrent Forkl
{Compatiblel

1)

——— Transaction
[Implements]
[Initiates]
[Concurrent Spawnl|[Spawns]{Enters]
fInheritsliNestsl
[BeginsliEnters]

e
R

— Serialization 2%
[Sequenced By)
[(Sequentiall
[Synchronous)
[Synchronous]
[Asynchronous]

Table: ..\..\data\oslan.asc Page:

+— Transaction @ -

— Implicity —

2 Strip: 12

— Transaction

247

¥

~

— Serialization #»

Table: ..\..\dataloslan.asc Fage: 1 Strip: 1z

Locks ——— Timestamps -—— Tickets
[Acquires] [Acgquires] fAcquires]
[Request Explicit]|[Given] [Requests]
[Inherit All3] [Inherits] [Inherits]
[Request Explicitl|{[Given] [Requests)

— Transaction »»
{Implements]
[Initiates]
[Spawns]lEnters]
[Inherits](Nests]
[Begins]lEnters]

Table:

.. \..\data\oslan.asc Page: 2

Locks

~

—— Timestamps —

249

Strip: 13

Tickets

—~— Transaction #3

Table: ..\..\dataloslan.asc Page: 1 Strip: 14

Logs #% ———p——— Undo ~—— Intentions —p— Write-Ahead —
fWritesJ[Examines]
[Entered Inl
[Writes Tol LUnspawn] [Spawn Request] L2 Phase Spawnl
[Via Farent] [Unforkl (Fork Requestl [2 Phase Fork]
fWrites Tol {Compensatel [Activate Requestl|[2 Fhase Activatel]

250

Table:

.+« \..\data\oslan. asc

Logs #®

Undo

Fage:

2 Strip: 14
—~—— Intentions ———— Write-Ahead —
251

Table:

+— Transaction »»
CImplements]
{Initiates]
[Spawns]lEnters]
JLlinheritsliNests]
{Beginsl{Enters]

.« V.. \data\oslan. asc

+— Coordinate &% —

Fage:

[Obeys]

[Request Initiatel
{Reguest Spawnl
[Request Fork]
[Request Activatel

25

1 Strip: 15

Begin Enter
[Requests] [Requests]
[Requests] (Requests]
[Requests] {Requests]
[Incompatible] [Nestsl
[Requests] [Requests]

Table: ..\..\data\oslan.asc Fage:

™ Transaction »2 5

—— Coordinate 2% =

~
rs

25

3

Strip:

Fegin

1

=

Enter

Table: ..\..\data\oslan.asc Fage:
Nesting Leave
[Causes] [Requestsl
(Begins] {Requests]
[Begins] {Requests]
[Inherits] [Unnests]
[Beginsl] [Requests]

1 Strip: 16

Destiny
(Votesl[Receives]
(Has]
(Has1]
[Has]
[Has]

a
=Y

Transition —
LUndergoes]
LIncompatiblel
{Incompatiblel]
[Incompatible]
[Incompatiblel

Table: ..\..\datavoslan.,asc Fage:

+— Nesting

— lLeave

2

255

Strip: 16

Destiny ————— Transition —

Table: ..\..\data\oslan.asc

—— Commit/Abort
(Implements]
{Begins]
(Begins]
[Beginsi
[Begins]

Paqge: 1 Strip: 17
End Transaction »#
[Implements] CImplements]
[NAR] [Initiates]
CNA1J [SpawnsI{Enters]
[NA] Linherits]l[Nests]
C[NA1 {Beginsl{Enters]

[

4]
o~

[(Implements]
[Initiates]
(Respawn]
[Refork]
[Reactivate]

Restart ==

Table: ..\..\data\oslan.asc Page:

+— Commit/Abort

2

End

r

Strip: 17

Transaction =¥

-

—— Restart »z

Table: ..\..\data\aoslan.asc

ET Record
(Examines]
INAJ

[NAJ

[NAJ

[NA1J

Fage: 1 Strip: 18
— F1/P2 Record —— Destiny ACE
[Examines] [Examines]
[NAJ [NAJ
[NAJ [NAJ
{NAJ CNAJ
CNAl] [NAJ

258

Request ACK —
[E:xamines]
[NAJ
l[NAJ
{NAJ
(NAJ

Table:

-

—— ET Record

.+ \..\data\oslan.asc FPage: 2 Strip: 18

~— F1/P2 Record ——— Destiny ACK —

— Request ACK ~—

Table: ..\..\data\oslan.asc

— Request NAK ——r
{Examines]
[NAJ
[NA1]
INAJ
INAJ

Fage:

260

1

Strip:

19

Table: ..\..\data\oslan.asc Fage: 2 Strip: 19

— Request NAK ——r

261

A Knowledge Dictionary System for Scheduling

P.6. Ossorio and L.S. Schneider

Appendix D

Submitted by

Linguistic Research Institute, Inc.
S600 Arapahoe Avenue

Boulder, Colorado B0O303

Submitted to
Rome Air Development Center
Griffiss AFB, New York

262

Support

TABLE OF CONTENTS

1. Social Fractice Description (SFD) Table. c s e s s . 264

2. Element Individual List (EIL) Table. . s e a s e e e 273

263

l. Social Practice Description (SFD) Table.

2464

Table: ..\..\data\schspd.asc Fage: 1 GStrip: 1

—FPROFPAR,
0
Q
0
0
0
o
Q

0
e
(1]

+58+0F T+—0S—~F TYFPE p————F | EMENT ———-MO+—DT6—DTU+TR+PROD TS+
“Acquire 48 Dj A 50
[RF] 48 D| A 50
[HW11] 48 D| A S0
<{PlanGet >

LRP3J

[HW1]

<bet

[RP]

[HW1]

{Verify>

(RP]

[HWL3]
<Acquire>

{RP1]

fHWlItem]
<Require:

(RP1]

tHWiItem]
<Contract for:
CRP1]

[HWiltem]
<Receive>

LRP1]

[HWlItem]
<Test>

LRP1

{HWiltem]
<Accept

[RP1]

[HWiIteml
<Cross offx
{RP1]

[(HWiIteml
<Acquirex

[RP]

[HW1Item]
“<Create> 36 Ml A S0
[RFP1
[Gs3
{Acquire> 80 D| A 50
{RPJ 80 D| A 50
€as1 80 Dt A 50
31 <Create:
31 "|RP1

21 C0SReq1l
32 <Develop:
2 {RP1

32 [0SList1]
{Select
(RP]J

(0S Vendor]l

iA 265

la]

+3 3 M

OO0OO0OIXII=X0O00OO

ITMHBMITIZIIIIIIO0OODZZZTIOOOLOODOO

[SI S RN

ALl CEBIEI R) = = = R R AV X XL LANNTT RN DD EWWWUMNRNM - = =X RPN~ - R

L8 Gl Gl Gl Gl Gl G o Gl W GG RN R RN RNRENINNRERNRMNER RPN R R R e e e e e e e e e

MMNNMONMNMERNMNMNRNMNN- =000 0 20000 0C o000 OO COCOCoTCO

ITXZOAQO0O0OC0C

Table:

—FROFARSTE

g
[)

UlUlLﬂUlUIUIUIUIU!UILHLHUIUIUIL"LH«D-D&-b-hh-h-b&-b-b-bh-bvb-b-hb-h-b-b-b-b-bM(.-"bl')'lbll‘.flI’.all’.-'ll;-J

-

COOCCC OO OO DO NMNANMN M IR M

LoD OO

'

&b(.'ll'.;l(xlI'-Jt-..‘lhlt-HHt###**U'lUlUiUI&-hh-b".-'l(d(.-lbl"-JMbJrJn—'-‘p—sb-t*##O“O‘D*O“LﬂLﬂLﬂ-b&

RN MNMRNMRPBNMNSMNENIMESE S ==~ 000000«

.. \..\data\schspd. asc

-OF T—0S—F TYPE;

91
51
51

o
&~

52

a
<

Fage: 2 Strip:

£t LEMENT

<Purchase:
[RF1]
[Vender0S]
<Receivex
LRF1]
[Vendor(0S1l
“<Accept>
LRP1
[(Vendor0S1
[0S]
<Install:
LRP1]

[HW2]
[LocAl
<Emplace:
CRP1]

[HW21]
[LocAl
<Assemble
[RP]

[HWZ1]
fLocAl
<Activate>
[RP1]

THWZ2)]
{LocAl
<Test:
LRP1]

[HW21]
[LocAl
<Accept >
[RP1]

CHW23
[LocAl
<Create>
CRP1]
[NetSW]
<Acquire:
LRP1]
[NetSW]
<Create>
CRP]
[NetSWReql
<Develop>
(RP]
{NetSWList]
{Select>
LRP1]
(NetSW Vendor]
<Purchase>
{RP1]

266

IIIITI=T0OOD

O0XXIIIO0OOOO0OO0O0O

—DT6—

&0
60
&0
60

80
80O
80

oo oo
>>>P >

D> DD

FROD TS+

S50
S50
20
50

50

20
50
S50

Table:

P
@

O N Y O T 05 I 0% TN % B SN 0% B 8 I ¢

d)}

.+« \..\data\schspd. asc

A

i
oo oo oo

WOW VDO OONNNNNSNNNSNSNNNSNNNNANANANNNSNSNSNOCGOOCCOOCTOCCOCOCOC OO G

+STG155+

-OF T

—_—— e R R AINNGCCOEN NS DWW, -~ R REACENDRDRN~ -~ R0 &

—0S—FTYPE,

~N NN

-

FPage: 3 Strip:

[VendorNetSW]
<Receiver
{RF1
[VendorNetSW1
{Accept:>

(RF1]
[VendorNetSW1l
{NetSW]
<Acquire’
[RP]

[AppSW]
{PlanGet -
[RP1]

LAppSW]

<Get »

[RP1]

LAppSW]
<Verify>:

[RP]

[AppSW]
<Acquires
[RF]
[AppSWIteml
<Require:
LRF1]
[AppSWItem]

[RP1]
[AppSWItem]
<Receive>
LRP1]
LAppSWItem]
<Test.

LRP1]
CAppSWItem]
<Accept:
[RP1]
{AppSWItem]
<Cross of+:»
[RP]
[AppSWitem]
<Acquire’
[RP1
[AppSWItem]
{Install:
[RF]

[0S]

(HW11
{DolLoad>
(RF]

[0s1]

267

1

—————£ 1 EMENT

<Contract for:

e
o

XTIXIIIIIIO

Oo00IIII0OOO0

MITINITNIIZTIITOoOOoOIIITI0OO0ODOOOO

DTG

150
150
150

0
GO
{0
0

=N elwlw

DTU;

TR

> DD

'FPRDDT'TS

S0
S0

30

S0
S0
50
30

7\

Table:

-0~0~0~o~o~o~o~o~oq:~o~o~o\o~o~o~o~0~o-0~o~o~u~o~o~oooooommmmmmmmmmm

—
il

10
10
10
10
10
10
10

«\..\data\schspd. asc

0
0
(3]
]
0
0
0
0O
0
)
O
0
0
0
0O
0
0
0
4]
0O
0
0
)
4]
O
Q
0O
0
0
0
Q
0
0
0
(8]
0

i —

Worr XXX OCCCUNUIU D ED DWW UUMNMMNEIR =~ 3 33 #8555 0 N e

—PROTPARSTGSS 0P T —0S —

0 0 0o

-+ TYPE

Page:

~———————F EMENT
CHW13]

<ValTest >

[RF1

C[0S]

CHWL]
<Evaluate>

CRP]

{LlValTest]

<Accept

LRF]

[0S]
{ValTest >
{RP]

[0S]

[HW13
[ListCltem] x
{Belect>

CRF1]
fListCltem] %
<lLoad>

[RF1
(ListCltem] X%
[0S

[HW13]
<Operate>
CRP1
(ListCItem] x
(0s]

[HW11]
{Examine’
(RP]
[ListClteml x
{0s1

CHW11

<Cross off>
fRP1
[ListCItem] x
<ValTest » :
[RP1]
fListCItem] %
£0s1

[HW13]
<Install:
(RP1

[NetSW]

[HW13

< Dol.oad >

[RP1]

[NetSW]

[HW1)]
<ValTest:

268

4 Strip:

MO

UNDEF

UNDEF

UNDEF

UNDEF

UNDEF

UNDEF

UNDEF

P UL o B B o

DTGj-DTU-rTRw

-PRODTTS+\

Table: ..\..\data\schspd.asc Fage: S Strip:
——PRD“F'AR-pSTG-—SSTDF'Tv—DS—r-F TYPE———ELEMENT M0 DTG

10 0 2 9 {RP1]

10 0 2 9 {NetSW]

10 0 2 9 [HW1]

10 0 3 <Evaluate>

10 0 3 LRP1]

1¢ O 3 [ValTest]

10 ¢ 4 <Accept

10 0 4 (RP1]

10 0 4 [NetSW]

11 0 # <ValTest:

11 0 # LRP1]

11 0 # [NetSW]

11 0 # [HW11]

11 0 # [ListDIteml] UNDEF

i1 Q 1 <Belect:

11 Q 1 [RP1

11 0 3 (ListDItem] UNDEF

11 0 2 <Load:>

11 0 2 (RP1]

i1 0 2 [ListDIteml UNDEF

11 0 2 {NetSW1

11 0 2 [HW11]

11 o 3 <0Operate>

11 0 3 (RP]

11 0 3 fListDItem] UNDEF

11 0 3 [NetSW]

11 0 2 [HW11]

11 0 4 ZExamine>:

11) 4 (RP]

11 Q 4 [ListDIteml UNDEF

11 0 4 [NetSW]

11 0 4 [HW13

11 Q 5 <Cross off:

i1 Q] [RF1]

11 v} 5 [ListDIteml UNDEF

11 0 6 <Val Test » R

i1 4] 6 LRP3 R

11 0 6 [ListDItem]l % UNDEF R

11 0 b {NetSW] R

11 0 6 [HW11] R

21 0 # <Add to:

kS 0 # [RP]

31 0 # [OSReqlteml

31 0 1 “Select™

31 0 1 [RF1]

a1 0 1 {0SNeed]

31 0 1 fListN]

31 0 2 {Analyze>

21 0 2 (RP1J

31 0 2 <0SNeed

31 0 3 <Cross off:

269

DTULTR

TPRODLTS;

Table: ..\..\data\schspd.asc Page: 6 Strip: 1

—F’R&—F’ARW—STG«SSTUPTW—-USﬂ—FTYPE-——‘—ELEMENT—-——MD-]—DTG———DTUa-TRﬂ—PRDDﬂ-TST\

31 4] 3 LRP]

31 Q 3 [OSNeed]

31 0 3 [ListN3]

31 0 4 3 <Add to=* R

kS 0 4 3z LRP1] R

3 Q 4 31 [O0SReqltem] R

32 0 # <Add to>

32 0 # [RP1J

32 0 # [(OSListItem]

32 0 | <Select >

32 3] 1 CRP1]

32 0 1 {Vendor0S]

32 0 i [LiscP]

321 0o 2 33 <Compare>

32 0 2 i3 CRP1]

32 0 2 33 [0SReq]

32 0 2 33 fVendorQs)

32 0 3 <Cross off>

32 0 3 [RP]

32 0 3 {Vendor(S]

32 0 3 (ListP]

32 Q 4 {Add to>

32 0 4 [RP] R

32 0 4 {Vendor0S] R

32 0 4 [0SListItem] R

33 0 # <Compare;:

33 0 # [RP]

%d B # [OSReqItem]

33 0 # [Vendor051]

33 0 i <Select:

33 0 1 [RP1]

33 0 1 [OSReqltem]l

33 0 2 <Cross off:-

33 0 P {RF1]

33 0 2 {OSReqltem]l

33 0 3 33 <Compare> R

i3 0 z I3 [RF] R

33 0 3 33 (OSReqltem] R

23 0 S I3 [Vendor(0s1] R

S0 0 # <Create> 0 Dy AJLC-I

30 0 # {RP1] 0 D| AjLC-I

S0 Q # CDHS3 0 D| AjLC-1

S0 Q 1 1 <Acquirex 48 D A{LC-I

50 0 1 1 LRP1] 48 D{ A|LC-I

S0 0 i i (HWL3] 48 D{ A|LC-1

30 0 2 4 “Install > 60 D| A|LC-I

50 0 2 4 (RF] 60 D| A|LC-I

50 0 2) [HW11 60 D| AJLC-I

S0 0 2 4 {LocAl 60 Di A|LC-1

50 0 31 A 8 <Install: 0 D{ A|LC-1

S0 0 31 A 8 (RP1] 90 Dl AlLC-I
270

Table:

—F'RO
S0
50
50
S0
S0
S0
S0
30
S0
S0
50
50

S50

.« \..\data\schspd. asc

vPARW
s
0
0
O
O
0
Q

l;

-

[
J—

<
—— gt B H D B b Gl d L LA R R EY e e = e 3 e o- mm mm mm we em == = 000 OO0 U [A T Y U R~ L O Y I % I |

8
8
10
1 (:)
10
10

oo DD

OONMoDoDDWw»PO>OUOOODD DD

(o o S o O A O R R

wh Lh n
—

FPage: 7 Strip:

-SSw-OF’TT—DS——FTYF'Ew—-———-——-ELEMENT

THW2)

[0S1
<Install’
(RF1

[HW2]
[NetSW]
<{Install>
LRP1]

[HW21]
[AppSW]
<Install:-
[RP]

[DHS3
[Listk] % UNDEF X
<Certifies>
[RFC1]

(DHS1]
<Accepts
[UserkPl
[DHS1
JAcquire’
[RFP]

£os1
<Acquirex
LRP1]
[NetSW1]
<Acquire:
[RP]
{AppSH]
<Add to:
[RP1
{NewSWReqlItem]
{Select
[RP1
[NewSWNeed]
[ListN]
JAnalyze:
[RP1]
ZNewSWNeed
<Cross off:
{RF1
[NewSWNeed]
[ListN]
“Add tor
(RFPI
[NewSUWReqltem]
< Add to:
[RP]
{NewSWListItem]l
{Select
[RP]

on

20

20
150
150
150
150
210
210
210
210
270
270
270
270
00
00
300
305
305
305

80

80

80
110
110
110
150
150
150

4‘101——DTG—--DTU

oD UoOUDUOUOUoDUDUDUUULODUODOUDUODUO0DU0ODUDUOODOOD

TTRT

r>P>»>PrP>P>TP2222DP2P22>222>22PDDD>D D

LC-I
LC-1
Lc-1I
LC-1
LC-1
LC-1
LC-I
LC-1
LC-1
Lc-1
LC-1I
LC-1I
LC-1I
LC-1
LC-I
LC-1I
LCc-I
LC-1I
LC-1
LE-I
LC-1
LC-1
LC-1I
LC-I
LC-1
LCc-1I
LE~1I
LC-1
LC-1

P ROD TS

Table: ..\..\data\schspd.asc Page: 8 Strip: 1

—FROPARTSTE+SE5+-0PT+—05 —F TYPE 7—————-=ELEMENT ;MD DTG DTUTTRTPROD“TST\

52 0 1 [VendorNewSW1

52 O i [ListF]

52 0 2 93 <Compare:

52 Q 2 53 [RP1

52 0 2 53 [NewSWReq]

92 0 2 o3 [VendorNewSW]

52 Q 3 <Cross off:

2 0 3z fRP]

52 0 3 [VendorNewSW]

2 Q 3 [ListP3

g2 0 4 <Add to:

52 0 4 {RP1] R
2 Q 4 [(VendorNewSW] R
52 0 4 [NewSWListItem] R
3 0 # <Compare:

53 0 # {RP]

3 0 # [NewSWReqItem]

53 0 # {VendorNewSW1]
o3 0 1 <Select>

53 0 1 [RP]

53 0 1 [NewSWReqlItem]

53 0 2 “Cross off:

53 Q 2 [RP]

53 0 2 [NewSWReqltem]l

53 O 21 -1 53 <~ Compare: R
o3 0 3 53 (RP1] R
53 0 3 53 (NewSWReqlItem] R
52 0 z 3 [VendorNewSW1 R

272

2. Element Individual List (EIL) Table.

273

3 N SUIS TN O I O N SOUNE GO TR O T O I SO o O T YT % T 2 T DO T 50 T o I % N % TN O T O T W I O IR ORI O T S0 IS i S i S L e el i e e i i e e e e e

MW Ndatavschell.

e

amalat

1)
[»}
8]
0
0
)
0
0
(9]
v}
0
5]
0)
I3]
0
0
0
(8]
0
Al

I:)

O
)
(3]
)
)

I:|

L i I e e o i i S o e Sl iR S et
MmMTTMmMmmoDooO OGO O > I I I

—

e b s e e e
» > DI D

E S R R R B T T B S B S AR

[Network Hardware]
[Network Hardware]
[Networl Hardwarel
[Mass Storagel
[{Mass Storagel
{Feripheralsl
{Feripherals]
{RFFarm!]
[RFFarmi]

[HW1]

[ListA]

[ListAl

[.1stAl

[ListAl

[ListAl

[ListAl

[(ListA]

LCFU]

[CPUI

[CPU3

[FFRU3J

[FPU]

[FFU]

[(FPU1

[Memory Bus]
{Memory Bus]
{Memory Bus]
[(Feripheral Interfacel

i[Perlpheral Interfacel

[Feripheral Interfacel
[(Monitor]
[Moni1tor]
(Mornitor)
(Monitor]

asc Fage: 1 Strip: 1
——————t LEMENT IMDIVIDUAL ——
[RFFarml] [RFIBM]
[RFFarml] I1BM
[HWi3 {ListAl
{ListAl [Frocescor]
CListAld (Consclel
[ListAl] [Metworlk Hardwarel
[ListAl [Extended Memory Interfacel
[ListAl [Feripheral Interfacel]
[ListAl {Mass Storage]
[ListAd [Peripheralsl
[Frocessorl LCFU]
[Frocessorl LFFU]
[Frocessaor] {Memory Bus]
{Consolel {Monitor]
[Consolel {Video Interface]
[Consolel [Feyboardl
[Consolel [Mousel

[Network Backplanel
[MNetwori Interface Board]
[Gateway Boardl

{Mass Ztorage Interfacel
[Mass Storage Devices)
[Frinter]

[Tape Drivel

(CRFIEM]

IBM

[ListAl

[Frocessor]

[Concolel

[Network Hardwarel
[Extended Memory Interfacel
[(Feripheral Interfacel
[Mass Storagel
{Peripherals]

Mational Z203Z2

Mctorola 68030

Intel BOIB7

Motorola 68881

ifatorola 68882

Irtel 803287

Intel 80287

Unibus

Versabus
MicroChannel
[RS-2321

![IEEE—4883
[Centronicsl
[(Monochrome Monitor]

[Color Composite Monitor]
[RGE Monitor]
[XY Monitor]

Tabie:

——F'RO

P A IR Y S Y R W T % T T IO 00 B 3 T % T % S U 3 W % N O I SO I N N S O 0% B OO T O T o T DU 6 T N I O Y O T O T U 2% T 0% B O O T N I 2 T 6 T O T 2 TR OSTR 3% I % J J T N T SN T 08 S SN 8)

.. \..\data\scheil.asc

FAR-
0
Q
Q
Q
0
Q

o
—
[}

E S B I B B I S R B B S B B B B A B B I I B SR B B CEE A BB B N

7SS

+OF T,

rUS,

.{ INetwork

-~

Fage: 2 Strip:

LEMENT

INDIVIDUAL ~—

[Monitor]

[Video Interfacel
[Video Interfacel
[Video Interface]
[Video Interfacel
[Keyboardl
[Keyboardl
[Keyboardl
[Mass Storage
(Mass Storage
(Mass Storage
[Mass Storage
[Mass Storage
[Mass Storage
[Printerl
[(Printerl
[Printer]
(Tape Drivel
{Tape Drivel
[Network Interface Board]
[Network Interface Boardl
(Network Interface Board]
[Network Interface Boardl
[Network Interface Board]
Backplanel
Backplane]
Backplanel
Backplane]
Backplane]
Backpl anel
Backplanel
Backplanel
Backplanel
Backplanel
Backplanel
Backplane]
Backplanel
Backpl anel
Board]l

Board]

Board]

Interfacel
Interfacel
Devicesl
Devices)
Devices]
Devices]

[(Network
[Network
[Network
[Network
[Network
[Network
[Network
[Network
[Network
[Network
[Network
[Network
[Network
[Gateway
[Gateway
[Gateway
[0Sl
(os1
{0s]
[0S]
[0s)]
[0Ss1
[0S1]
[DS1]
[0Sl
(NetSW1]

[(HiRes Monitorl

[MDA Interfacel

[CGA Interface]

[(EGA Interfacel

[VGA Interfacel

[XT Type kevboardl

LAT Type keyboard]

{(Mousel

{SCsI]

{WDI1

[Fixed Hard Diskl

[Disk Cartridgel

LCD-ROM]

CCD-WORM1

[NL@ Printer]

{High Speed Printer]

[Laser Printer]

[(Start/Stop Tape Drivel
[Streamer Tape Drivel

6-Net Board

Omninet Board

Arcnet Board

JCOM Board

Flan 2000 Board

(Optical Bus Backplanel
(Optical Ring Backplanel
[Optical Star Backplanel
[Dptical Cluster Backplanel
[Coaxial Bus Backplanel
[Coaxial Ring Backplanel
[Coaxial Star Backplanel
[Coaxial Cluster Backplanel
[Twisted Fair Bus Backplanel
{Twisted Pair Ring Backplanel
{Twisted Fair Star BRackplanel
{Twisted
[VHF Bus Backplanel
[UHF Bus PBackplanel
[X.29 Gateway Board)
[SNA (Gateway Eoard)
[SDLC Gateway BRoard]
Unix System V

Xenix 387

ANX

IRMX B7

[UCSD pl

Concurrent

YM/PC

CX/PC

MSDOS 5.

Netware

Pair Cluster Backplanel

Table:

——uFRGTPﬁRTSTGTSS?UPTTDS-

-

NS v a0 S €A 0 S o S W e O 0 S v S o A I A T T PRt R R - S S g S I BT IO I S R ST I S BT R

~1

Y B B N N R B IR N |

NN NN

.. V.. \datal\scheil.asc Fage: I

1)
i}
0
(8]
0
0
0
»]
)
0O
8]
0
0
Q
#]
)
Q
G
0
0
0
0
Q
O
(¥]
0
0
0
0
0
0
O
]
Q)
Q)
Q
0
0
)
8}
0
Q
0
(9]
Q)
Q)
0O
(W]
0
0
0

I R R O I O R N R R R R R R R TR IR I I o S T T O ety

et et bt b peh bt ped bk b b ek e e

e bt A pek ek pt A e ek e

mmmmmm

[Met3SW]

[MNetSi]

[MetSW]

[NetSW]

{MNetSW]

[MNetSW]

[NetSW]

[NetSW]

[NetSW]

[HW2]

[ListR1

[ListR]

[ListR3]

fListR]

[ListR3]

(ListR1]

[ListR3]
[NetSWReqgs]
[NetSWReqs]
[NetSWRegs]
[NetSWReqs]
(NetSWReqgs]
[NetSWReqs]
[Bandwidth Reql
[AppSW]

[ListH]

[ListR]

[ListE]

[ListHE]

CListE]

[ListB3]
[Compilers]
[Compilers]
{Compilers]
{Compilers]
(Compilers]
{Text Editor]
[Text Editor]
[Text Editor]
[Text Editorl]
{Word Frocess SW]
[Word Process SW3]
[Word Frocegs SW]
[File Manage 5SW]
[File Manage SW]
(File Manage SW]
(Database Manage
(Database Manage
[Database Manage
{Database Manage
{Spreadsheet SW1]

276

————————£ L EMENT

Strip:

T INDIVIDUAL—

W1
SW1]
SW]
SW]

:GfapEV1ne

jLocus

iZ2 Flus

Omninet

FC-Net

Multilink

Tiara Link
Tapestry

ARCnet

[ListR1]
[Processor}
[Consolel
[Network Hardwarel
[Extended Memory Interfacel
[Peripheral Intertacel
{Mass Storagel
[Feripherals)
[Bandwidth Reql
(MT Failures Reql
[MT Recovery Reql
[Failure Mode Reql
(Compatibilities Reql
[Services Reql
etc

[ListR]

[Text Editor]
(Word Frocessor]
[File Manage SW1l
{Spreadsheet SWi3
[Integrated SW]
[Compilers]
[Pascal Compiler]
[Ada Compilerl
{C Compiler]
[FProlog Compiler]
{Basic Compilerl
Vedit

[Vil

17T

{SFF1

Wordstar

Word Ferfect

Word

FroFile

Hyper Card

1T

Farado:

MDES

Fillar

TT

SuperCalc

Table:

n
e

e Y BN IR N}

“

.+ s e \data\scheil.asc

A B R e T e B B B N B e

FARTS5TG;
O #
0O #
0 #
0 #
O #
0 #
0 #
0 4
] #
0 #
Q #
0 4
i -3
v #
0 #
%) #
0 #

Fage: 4

58S+ OF T 0S5 +————FELEMENT
] TO ro {Spreadsheet SW]
[Spreadsheet SWl
[Spreadsheet SWI]
{Integrated ESW]
[Integrated 5SW1
{FPazcal Compiler]l
[(Fascal Compiler]
[Pascal Compiler]
[Ada Compiler]
[Ada Compiler]

[C Compiler]

£C Compiler]

[C Compiler]l
[(Prolog Compiler]
[Frolog Compiler]
[Basic Compilerl

{Basic Compiler]

Strip:

INDIVIDUAL —
MultiPlan

Tk 'Solver

Lotus {-2-%

Symphony

Framework 11

EBorland Fascal Compiler
Microsoft Fascal Compiler
fUCSD Pascal Compilerr
Alsys Ada Compiler

Janus Ada Compiler
Borland C Compiler
Lattice C Compiler
Microsoft C Compiler
Arity Prolog Compiler
Borland Frolog Compiler
Borland Basic Compiler
True Basic Compiler

A knowledge Dictionary System for Scheduling

P.6. Ossorio and L.S. Schneider

Appendix E

Submitted by

Linguistic Research Institute, Inc.
5600 Arapahoe Avenue

Boulder, Colorado 80303

Submitted to
Rome Air De /elopment Center
briffiss AFB. New York

Support

TABLE OF CONTENTS

t. Fact Type Table ¢ o & ¢ & @ i 4 v 4 o 4 4 v « o« o « « ZBO

2
o
-

Z. Fact Table e = & & a2 ® m e s & e 4 = a s s e e e .

1. Fact Type Table

DESCRIFPTION

—FTYPE

VOO &y) -

— e e e e
U & R O

NN]
) =

S
4 b

LSRN I NI o R & T S JO T % I 8
Ll R O - ¢

1o1
111
112
21

[Process]
iFrocess]
[Frocess]
[Process]
[Process]
[Processl
[Processl
[Processl
[Process]
[Process]
[Process]
[Process]
[Process]
[Processl]
[Frocessl
[RP1]
LRF1]
(RF1]
[RP1]
{RP1]
[RF1]
[RP1]
CRPM]
[RP]
CRP]
[RF1]
[RP1

<Started: [(On Timel
<3tarted: [Late]

<Started: [Not Yet]
<Proceeding: [Per Schedulel
{Proceeding: [Behind Schedule]
{Estimate:> [Completion]
<Estimate.~ [Start]
<{Completed>

{Btarted> [Just Nowl
<Completed> {[Just Nowl]
<Started: [Early]l
<Completed> [Latel
<Completed> [Early]l
{Delayed By [Process]
<Delayed By. [Object]

<Creater [Requirements] [0S]
<Create:> [Requirements] [NetSW]
{Create, [Requirements] [AppSW1
<Create> [DHS Nodel [Loc]
<Assemble’> [HWZ2] [Locl
<Contract>
{Receive?
<Accept> [0S]
<{Select >
<DolLoad >
<ValTest> [NetSW] [05] [HW2]
“Verify:> [AppSW1]

[Furchasel [0S5] [Vender(0S)]
[0S] (Vender(S5]

[NetSW]
CNetSWl [0S]1 [HW2]

[RPM] <Certify: [DHS]
[DHS] <Uncertified By: [Constituent]

(RPUser] -

“Accept> [DHS1

280

2. Fact Table Fage: i Strip: 1

——IDLFTYFE
1 1
2 4
4 4
5 8
b6 21
7 31
8 4
9 10

10 41
11 S1
12 o1
13 22
14 61
851 71
16 81
17 91
18 4
19 6
20)
21)
22)
23 101
24)
25 b
26 10
27 14
28 10
29)
30 14
kS| 8
32 112
33 111
I4 121

ELEMENT
{501 <Started: [(On Timel

[01] <Froceeding: [Fer Schedulel]
[01.0.2] <Froceeding> [Per Schedulel
[01] <Completed:

(RFTRW] <Create: [Requirements] [0S]
[IBM] <Assembler [DHS Hardwarel [Omahal
[04] <Proceeding: [Per Schedulel

{04] <Completed> [Just Nowl

[TRW] <Contract [Purchasel [Unix3[I5C]
[TRW] <Receive: [Unix] CISC]

[TRW] <Receive> [Unix] [Belll

[DEC] <Create:> [Requirements] ([(NetSW]
[RPOmahal <Accept:> [Unixl]

CRPDEC] «Select: [DECNET]

[DEC] <Doload> L[DECNET] [Unix1 [DHS1]
[DEC] <ValTest> [DECNET] [Unix] [DHS]
[10] <Proceeding> [Fer Schedulel

{107 <Estimate> [Completionl

{51..5] <Estimate: [Completion]

[10] <Estimate [Completion]

[06] <Estimate’ [Completion]

[F. J. Aucoinl) <Verify: [AppSW1

[(51..5] <Estimate> [Completionl]

£51..51 <Estimate: [Completionl

(51..5] <Completed> [Just Nowl

[51] {Delayed By:> [User Interfacel

[S1) <Completed: [Just Nowl

(S50..2] <Estimate:> [Completionl

[50..2] <Delayed By> [1]

[30..2] <Completed:

[DHS] <Uncertified By:> [User Interfacel
CRPM] <Certity> [DHS User Interfacel
[RPUser] <Accept> [DHS]

DATE
890301
890401
BI0228
890415
890401
890425

82040
BR0415
80310
890510

890506
89060%
890701
890720
B0720
830901
B9091S
890915
890901
890901
891215
891201
891101
891101

F00101
QOO101
001135
Q00115
QUOLI0
0OLI0

Fage:
RFIEM
RPIEBM
RFIBM
H. R.
M. Jd.
H. R.
K. H.
H. R.
M. J.
M. J.
M. J.
K. C.
M. Jd.
K. C.
K. C.
K. C.
K. C.
k. C.
M. J.
K. C.
M. J.
M. J.
M. J.
M. J.
M. J.
M. J.
M. J.
M. Jd.
M. d.
M. J.
TRW

TRW

TRW

1 Strip:

SOURCE

Robinson
0°Brien
Robinson
Martinez
Robinson
0’Brien
0’Brien
0'Brien
Jones
0’Brien
Jones
Jones
Jones
Jones
Jones
O0*Brien
Jones
0Brien
0’Brien
0’Brien
O'Brien
Q*Brien
0’Brien
0’ Brien
0 Brien
0°Brien
0’Brien

——RDATE

PR

—EXPLANATION

890310
870404
890406
890420
890420
8904253
890425
8904320
890430
890430
890515
890601
890610
8906153
890703
890725
890725
890801
8920803
890815
890813
890901
890901
890913
B91105
891105
891110
891201
00101
Q00113
QOO201
Q00210
900210

(2]

FEI R B R R R M G B Gl G G Gl G R G B R R G G G B G e

[N

Contract F30602-C-89-117

Per Purchase Contract

0S Installation Complete

Compatibility Problem
Compatibility Problem
Compatibility Problem

Delay in Acguiring SW
Revised Completion Estimate

Delay in First Installation
Delay in First Installation
Delay in First Installation

User Interface Certified

Page: 1 Strip: 3

RPFSORFACT ——————RSCHED————1\

50..32 20 day delay
50..3 19145 day delay
30..3 19145 day delay
30 day delay
06..3
S1 45 day delay
20 day delay
30 day delay
30 day delay plus x
40 day delay
28130 day delay
30 day delay plus x
28|45 day delay
15 day delay plus x
32|30 day delay
30 day delay

[N N]
[- R

283

MISSION
of

Rome Air Development Certer

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C3I) activities. Technical and
engineering support within areas of competence is frovided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C*I systems. The areas of
technical competence include communications, command and
control, battle management information processing, survetllance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibitity.

